
Safe arrays and pointers for C

John Nagle

Discussion draft – July, 2012

Introduction
Buffer overflows continue to plague C and C++ programs. This is a draft proposal for dealing with that
problem. The basis of this proposal is to define means for expressing the size of arrays in C. C already
has fixed-size arrays with useful semantics. In this proposal, the existing syntax for fixed-size arrays is
generalized to allow known-size arrays, where the size of the array is known at variable initialization
time. With relatively minor and compatible changes to C, the most troublesome causes of program
crashes and security vulnerabilities can be dealt with.

In any useful program, each array has a size known to the programmer. In C, there is currently no way
to consistently express that size in the language. This proposal adds that capability.

Scope
An ISO document on common programming language vulnerabilities, “Information Technology —
Programming Languages — Guidance to Avoiding Vulnerabilities in Programming Languages through
Language Selection and Use”, ISO/IEC TR 24772, provides a standard taxonomy of flaws in
programming language designs. The specific flaws in C addressed by this proposal are:

• 6.8 String Termination

• 6.9 Buffer Boundary Violation (Buffer Overflow)

• 6.10 Unchecked Array Indexing

• 6.11 Unchecked Array Copying

• 6.12 Pointer Casting and Pointer Type Changes

• 6.13 Pointer Arithmetic

• 6.14 Null Pointer Dereference

• 6.40 Type-breaking Reinterpretation of Data

These are the errors most closely associated with program crashes and low-level security
vulnerabilities.

Not addressed are:

• 6.15 Dangling Reference to Heap

• 6.41 Memory Leak

07/20/12 Safe arrays and pointers for C - DRAFT 1

Preventing errors of those types requires automatic memory management or extensive static analysis.
Those flaws are difficult to fix without unacceptably large changes to the C language. Informally, the
problem with adding garbage collection to C is that C is the language in which one writes the garbage
collector.

Summary of language changes
The language changes required are minor.

Relaxation of existing restrictions

• Expressions allowed in most array size declarations. (This is the key enhancement.)

Features imported from C++11

• auto

• References

New reserved words

• force_cast

New predefined functions

• lengthof(array)

• array_slice(array, start, end)

• void array_init(variable, value)

• void array_zero(variable)

New pragma

• #pragma strict

New restrictions (non-strict mode)

• None on existing code other than avoidance of the reserved word force_cast.

New restrictions (strict mode)

• Conversion from a pointer to an array to a reference to an array of known length requires an
explicit force_cast, to indicate that the programmer has commanded an unsafe operation.

• Conversion from anything which can be NULL to a reference implies a run-time assert check.

• Unions may not contain pointer or reference types, and all parts of a union must have the same
length.

07/20/12 Safe arrays and pointers for C - DRAFT 2

• To be used for pointer arithmetic, a pointer variable must be initialized at declaration to an
element of an array.

• The only allowed values for the pointer variable used in pointer arithmetic are ones which point
to an element of the array to which it was originally assigned. (Pointing to an element one past
the end is allowed, for backwards compatibility.

Rationale

Goals
• No change to run-time representation of data. (no descriptors or “fat pointers”)

• Minimal modifications to the C language.

• Define “strict” and “non-strict” forms of C modules; existing C99 code can be compiled as
“non-strict” modules and “strict” modules can interoperate with non-strict modules.

• If all modules are of “strict” form, and no unsafe overrides are used, programs should be
protected against the flaws listed above.

• Hidden memory management mechanisms (garbage collection, reference counting) should not
be required.

Previous work
• Microsoft source code annotation language (SAL)

• Cyclone (AT&T research language)

• SCC, the Safe C compiler.

• Ccured

• MemSafe

• Incompatible dialects and related languages

Fixed-size arrays in C and C++
The basis of this proposal is to define means for expressing the size of arrays in C. Most arrays in C
and C++ are passed around as pointers, with no size information. There is, however, an exception –
fixed sized arrays. C and C++ support fixed-sized arrays. Fixed-size arrays are typed objects of known
length. They can be defined as types, and, in C++, references to fixed size arrays are fully supported.

int arr100[100]; // an array of 100 ints
arr100& arr100r; // ref to array of 100 ints

This is valid C++ today. C++ already supports the concept of a reference to an array. (Arrays of
references are prohibited by the C++ standard, but references to arrays are not.)

07/20/12 Safe arrays and pointers for C - DRAFT 3

Where the compiler knows the size of an array, we can use that information. It can be accessed via
sizeof. This is convenient, but only useful for arrays of fixed size.

C99 dynamically sized arrays
C99 added support for dynamically sized temporary arrays. This feature is often used in numerical
code, where it is common to call a function which needs a temporary array for the duration of the
function call.

float mathfn(const float in[], size_t n)

{ float workarr[n]; // work array of length n

…

return(result);

}

This was the first place in C where an array could be resized at compile time with the compiler aware
of the size.

Known-size arrays.
The existing syntax and semantics of fixed-size arrays, C99 dynamically sized arrays, and C++
references can, with slight extensions, allow the support of known-sized arrays. The only syntactical
change required is to allow expressions in a few places where, at present, only constants are allowed. It
is proposed to allow expressions in array sizes in type declarations in the following places:

• local variable and typedef declarations

• function parameter declarations

• casts within initialization expressions

• structure definitions (under certain restrictions)

When a known-sized array is defined or passed as a parameter, its size is the value of the dimension
expression evaluated at initialization time.

This allows a function such as the following:

void copybyref(int (&a)[n], const int (&b)[n], size_t n)
{
 for (int i = 0; i < lengthof(a); i++)
 { a[i] = b[i]; }
}

This is a size-safe copy, intended to be used as follows:

int a0[100], a1[100]; // defined with a type declaration
copybyref(a1, a0); // copy array of known size

07/20/12 Safe arrays and pointers for C - DRAFT 4

int b0[50], b1[50]; // smaller arrays
copybyref(b0, b1, 50); // copy array of a different size
copybyref(b0, a0, 100); // size mismatch – compile time error

The last “copybyref” call is an error, because the array sizes do not match. For a constant “n” this can
be caught at compile time. For a variable n, it has to be a run time check.
The compiler must check, at a call to “copybyref”:

assert(lengthof(a) == n);
assert(lengthof(b) == n);

If the programmer calls “copybyref” as follows:

copybyref(b0, a0, lengthof(b0));

The checks become

assert(lengthof(b0) == lengthof(b0));
assert(lengthof(a0) == lengthof(b0));

The first check is optimized out as an identity. The second check still requires a run-time check. But
only one check per function call is required. This is far cheaper than general subscript checking.

Here, a run-time check is required only because two arrays must match. In many common cases,
especially some of the classic causes of buffer overflows, there is no additional overhead. For example,
the classic UNIX read call would now be expressed as:

int read(int fd, char(&buf)[n], size_t n);

The required check is

assert(lengthof(buf) == n);

If called with

int buf[512];

...

int stat = read(fd, buf, lengthof(buf));

the check required is

assert(lengthof(buf) == lengthof(buf));

which is optimized out as an identity.

Worth noting is that the function declaration of read above is, in non-strict mode, compatible with
existing code which passes buf as a pointer to a char.

Why references?
A key part of this proposal is the use of C++ style references in C. As shown above, references to

07/20/12 Safe arrays and pointers for C - DRAFT 5

arrays can already contain size information about the array. Pointers to arrays in C refer to the type of
the first element, with no array length information. Changing the semantics of pointers in C would
break existing code. Adding references to the C language will not break anything. C++ already has
both references and pointers. The relationship between the two is well understood and not a cause of
trouble, so this can be done with confidence.

Strict mode
The enhancements to C syntax and semantics described here are backwards compatible with existing C
code. Beyond this is “strict mode” which disallows some unsafe constructs and operations. Strict mode
requires known size arrays in situations where overflow is possible. “Strict mode” is defined on a per-
source-file basis. Strict and non-strict code can interoperate.

New rules enforced in strict mode:

• Conversion from a pointer to an array to a reference to an array of known length requires an
explicit force_cast, to indicate that the programmer has commanded an unsafe operation.

• Conversion from anything which can be NULL to a reference implies a run-time assert check.

• Unions cannot contain pointers or references, and all alternatives of a union must have the same
size.

Programs written in strict mode should be protected against the list of memory safety errors covered in
the “scope” section above. This should eliminate most buffer overflow problems.

Strict mode for a compilation unit is indicated by

_Pragma("strict")
or

#pragma strict

Implications of known-size arrays
With known-sized arrays and strict mode introduced, their use and consequences can be examined.

How array size information is stored

There are no array descriptors involved. The programmer tells the compiler the size of the array as an
expression, and that expression is evaluated at the point in the program where the relevant declaration
appears.

int asize = 100; // size wanted
int atab[asize]; // declare known-size array
asize = 200; // this does not resize the array
printf(“Length of atab is %d\n”, lengthof(atab)); // prints 100

In the above worst case example, the compiler must generate a temporary is needed to store the size of
the array, because the inputs to the expression defining its size change. This is usually unnecessary.

07/20/12 Safe arrays and pointers for C - DRAFT 6

Reference declarations

C99 already allows variable declarations to be interspersed with executable code. References must be
initialized in C++, and this restriction would be maintained with references in C. So references will
generally be initialized near the point of first use. We are now allowing expressions in array sizes in
declarations, and that expression must be evaluated where the declaration appears.

int b[100]; // array of 100 ints
...
int (&rb)[lengthof(b)] = b; // ref to array b

Assignments to references are subject to type checking. Where the reference on the left hand side has a
known length determined at run time, this may imply a run-time assert check on array size. This is
considered a subscript check, as defined below.

Casts

The syntax of casts follows that for declarations. As with reference declarations, the size must be
evaluated at the point of the cast. Casts with expressions in array sizes are allowed in initialization
expressions.

Ordinary casts must be memory-safe in strict mode. Unsafe casts must be expressed using some
specific syntax, as with reinterpret_cast in C++. Unfortunately, the syntax of reinterpret_cast uses
the corner-bracket template notation of C++, and is inappropriate for C. We need some syntax to
indicate that a cast is “forced” in violation of normal type rules.

This, like most syntax issues is a politically touchy problem. A solution should be

• Consistent with the expectation of C programmers.

• Backwards compatible with existing code

• Findable by simple searches to enable easy code auditing.

One option is a special storage class, used only in casts. A phrase such as forced_cast might be
appropriate:

int val = 1234;

char* ptr = (forced_cast char*)val; // UNSAFE

Even in strict mode, this would be required only when forcing a conversion which could impact
memory safety. So such casts would be quite rare.

A few casts can generate run-time checks. Conversion of a pointer to a reference must generate an
assert check. Such checks are enabled when subscript checking is enabled.

Dynamic allocation (“malloc” and its friends)

This is one of the more difficult problems to handle safely. Yet, as it is frequently a source of program
bugs of the buffer overflow variety, it it necessary to do so. The problems which must be addressed
include:

• The classical return type of malloc, “void *”, cannot express size information.

07/20/12 Safe arrays and pointers for C - DRAFT 7

• Because malloc can return NULL, it is not permissible to directly generate a reference from
memory allocation.

• Nor can allocation failure be handled via an exception.

• Pointers to references are not allowed.

• Structures which contain references must be initialized.

• The syntax for allocating memory must be concise.

• Backwards compatibility with existing code must be maintained in non-strict mode.

All those constraints, taken together, create a tough problem. A few options:

• Allocation functions which raise a signal on failure. This impacts program structure, but
provides the cleanest syntax.

char (&p)[n] = MALLOCARRAY(char, n);

with a suitable macro, is a clean, concise syntax, but there's no way to handle the error
condition in in-line code. It's worth providing this for routine applications which do not
need sophisticated out-of-memory handling.

• Return a pointer to a reference to the object, or null. With some encapsulation in a macro, we
can insure that the necessary casting is type-safe.

#define MALLOC(T) (T*)malloc(sizeof(T)) // safe allocator

If we use this to allocate an array of known size, the result is a pointer to the array as an object,
or NULL.

size_t n = 100; // desired array size
...
typedef int tab[n]; // array of known size n
tab* p = MALLOC(tab); // alloc a "tab"
if (p == NULL) return(false); // handle allocation failure
tab& tab1 = *p; // get ref from ref to
pointer
...
tab1[10] = 1; // it's a valid array

This is type-safe and size-safe. Note that there are no casts other than inside the define.

Initialization of dynamically allocated space

In C, “malloc” normally provides memory space containing old semi-random data. For most data types,
this is not a safety problem. However, for pointer safety, we must insure that allocated items with
pointers or references are initialized. Zeroing new memory space is not an option for references, and
because we're encouraging the use of references in place of pointers, this has to be done right.

So, when a new struct or array or structs is allocated, and the struct type contains a pointer or reference,
it must be initialized from an initial value of that type.

07/20/12 Safe arrays and pointers for C - DRAFT 8

Syntax for this has yet to be defined. Something like

struct item {
size_t len;

 char (&) msg[len];
 };

const char[] msg1 = “Hello, world”;
const itemproto = { sizeof(msg1), msg1);
item*p = MALLOC(item, itemproto);

suggests itself.

Underneath that macro, a built-in generic function is required for the initialization operation. This is a
safe replacement for the classic “bcopy”.

• void array_init(variable, value)

This simply copies value into variable, with type checking. The variable parameter can be an array of
known or fixed size. This is needed because array assignment isn't allowed, and assignment to an array
reference assigns the reference, not the content. In C++, we could write this as a template function, but
in C, any generic function must be a built-in.

As a convenience, a safe replacement for the common “bzero” is provided:

• void array_zero(variable)

This simply sets the array to binary zero. It is a compile-time error to use this on an array of structures
containing references.

Associating length with an array pointer in a structure

We might now want a structure which carries both the array and its size. The pointer-based form is

typedef str { size_t len, char* data};

New reference form:

typedef str { size_t len, char (&data)[len]);

…

str s1 = {n, MALLOC(char, n) }; // structure initialization

The key point here is that char (&data)[len] is a reference to a string of known length. The
length, len, is an element in the same structure. This ties the length of the array to a value which can be
found from the structure. This tie is a property of the type declaration. The general rule for such
declarations is that the dimension expression is evaluated in the context of the struct. Fields of the
struct may appear in the expression.

As a convenience,

lengthof(s1.data)

is then well defined.

07/20/12 Safe arrays and pointers for C - DRAFT 9

This idiom is only valid for structures initialized all at once through structure initialization.

A struct with an array as the last component

A special case is

typedef struct item {
size_t itemlength;
char itemvalue[itemlength];

};

This is permitted. The size of the object is calculated based on the value of itemlength. Such structs
should be initialized as a unit, with an initialization expression. In strict mode, assignment to the length
is not permitted after initialization.

Impact on other language features
The basic proposal has now been described. The impact of the proposal on various features of the C
language is next.

Unions
In strict mode, elements of unions are restricted to non-pointer and non-reference types, and all
alternatives must be the same size.

In most existing code, unions are used primarily for data being passed through networks, files, and
message passing systems. Such data, since it comes from external sources, seldom contains pointers.
Adding language support for safe discriminated variant records, as was done in Cyclone, seems
excessive for the infrequency with which it would be used.

In strict mode, the only way to override pointer type safety is through the explicit use of force_cast.
This make it easy to search and audit programs for pointer type problems.

Multidimensional arrays

Multidimensional arrays of known size are supported. This simply generalizes the existing rules for
multidimensional fixed-size arrays.

size_t order = 3;
…
float tab[order][order]; // square array of order N.

As with arrays of fixed size, these are not arrays of pointers, but dense arrays of elements. This will be
a great convenience in numerical work. There is also a performance gain. On modern CPUs,
multiplying by row size to compute a row offset is faster than accessing a table of pointers.

Pointer arithmetic

Pointer arithmetic is a standard idiom of C programming. Although it would be safer to eliminate it
from the language, that isn't feasible for an update to C.

07/20/12 Safe arrays and pointers for C - DRAFT 10

The most common uses of pointer arithmetic use local variables which are bound to a single array
throughout their life. Such pointers behave much like C++ iterators. So we can allow pointer arithmetic
under much the same restrictions applied to iterators. These are:

• The pointer variable must be initialized at its declaration to an element of an array.

• The only allowed values for the pointer variable are ones which point to an element of the array
to which it was originally assigned. (Pointing to an element one past the end is allowed, for
backwards compatibility.

Pointers with such properties are safe for pointer arithmetic purposes, provided there is range checking.
Range checking for such pointers is possible without “fat pointers”, because the array to which they are
bound is known at compile time.

Unsafe pointer arithmetic is allowed only through force_cast.

String constants

String constants have type char (&)[length] or wchar_t(&)[length]. These types will convert to char*
or wchar_t* for compatibility with non-strict code. The sizeof and lengthof functions can be applied
and count the usual trailing null.

Null-terminated strings are a problem. A workable solution is to allow read access to const arrays
without subscript checking. This allows reading junk, but not overwriting other variables.

Standard library safety

Library function can be categorized as follows:

• Can be made fully compatible and safe with arrays of known size – read, write, fread, fwrite,
etc.

• Unsafe and already deprecated – gets, sprintf, etc. These would be unavailable in strict mode.

• Safe for write, but not for read – printf, snprintf, etc. Permitted in strict mode on the grounds
that the impact of disallowing them is too high.

• Unsafe – sscanf, which stores into memory based on format strings. Unavailable in strict mode.

Library issues are beyond the scope of this document, but appear to be manageable.

Subscript checking

With enough information available to perform subscript checking, implementations may offer it as an
option. The question is what to do when a run time error is detected. The available options are to take
the action defined for an “assert” failure, or to raise a signal. That decision can be left to the
implementation.

It is strongly recommended that implementations which do subscript checking optimize it. As a
minimum, the following is suggested:

• common subexpression optimization should be applied to subscript checks within loops.

• Within “for” loops, checks should be hoisted to the beginning of the loop and done once per

07/20/12 Safe arrays and pointers for C - DRAFT 11

loop if at all possible.

• Hoisted checks which resolve to constant expressions or identities should be evaluated at
compile time, and reported as errors (if failing) or optimize out (if succeeding).

• The array must not have a scope narrower than that of the pointer variable, so that the array
cannot go out of scope while the pointer variable is still in scope.

The goal of the above is to optimize out most, if not all, subscript checks in inner loops of common
matrix calculations.

It is explicitly permitted to detect and act on a subscript error as soon as it becomes inevitable. In other
words, if an implementation can detect that a subscript error will occur on some iteration of a loop, and
there is no way to exit the loop before reaching that iteration, the subscript error can be reported at
entry to the loop. A potential exit from the loop via “break” or “return” must inhibit this optimization.
A potential exit via “longjmp” or “exit”, which might be hidden in a called function, would not be
considered to inhibit this optimization.

Convenience features
With the language aware of array length, some convenience features can be added to make
programming easier. These are all optional from the programmer's perspective, and need not be
retrofitted to existing code.

“auto” storage type as in C++ 20xx.

“auto”, from C++11, is added to C. The motivation for this is the long declarations required for
references to complex arrays.

“lengthof”

C has a built-in “sizeof” function. It's common to define “lengthof”, returning the number of elements
of an array, as a macro. It is proposed to make “lengthof” a standard. Both “sizeof” and “lengthof” are
defined for arrays of known size. This makes the size of an array immediately and reliably available to
code.

Iteration over an array

Almost all languages defined in the last 20 years (with the notable exception of JavaScript) have syntax
for iterating over all the elements of a collection. For arrays of known size, the compiler now has
enough information to provide such a construct. The syntax of this may be controversial, and needs
discussion. Some options include

for (auto x in arr) { … }

for (auto x forall arr) { … }

Making “in” a reserved word impacts existing code, but yields the nicest syntax. Using this feature with
“auto” leads to concise loop statements which are not error prone. Suggestions in this area are
welcome.

07/20/12 Safe arrays and pointers for C - DRAFT 12

Subarray syntax

At times, it is desirable to talk about a subarray of an array. The existing C syntax for this is

char arr[100]

char p[] = &arr[20];

This tends to be error-prone, as the size of the subarray is rather vague. So it is proposed to borrow the
slice operation from Javascript:

char arr[100]

char (&p)[80] = array_slice(arr, 20, 100);

Following the Javascript and Python convention, the limits of slice are the start index and the end index
+ 1. Negative, overlapping, and out of bounds indices are errors and should be detected if subscript
checking is enabled.

Another option is to borrow Python's subarray syntax:

Char arr[100];

char (&p)[80] = arr[20:100]; // reference to a subarray of arr

This is concise, but more controversial, as it involves new syntax. It has the advantage that subarray
references could be allowed on the left side of an assignment.

Conclusion

Alternatives

Making C a memory safe language without unduly changing the language is difficult. This proposal is
intended as a direction for standard C, and as such, must be quite conservative in the changes proposed.

Annotation systems, such as Microsoft's SAL, can be effective if used. Because they're not integrated
into the language, they tend to make programs more verbose. Thus, they're rarely used without strong
managerial pressure.

Cyclone has a reasonable set of extensions, but strays far enough from C that it's a different language.
Cyclone offers three types of pointers - “normal”, “never-null”, and “fat”. New symbols (“@” and “?”)
are used to designate the different types of pointers. “Fat” pointers imply hidden run-time machinery.
This is a valid approach, but it is not C.

SCC, the Safe C compiler, is claimed to be able to detect all pointer and access errors at run time.
However, it required using an elaborate data structure for every pointer and substantial run-time
overhead.

C++ addresses safety by trying to hide the unsafe constructs of C under a layer of standard templates.
In practice, the templated constructs tend to “leak” raw C pointers, and buffer overflows in C++
applications are still common.

Other variants such as Objective-C and Java are useful languages, but they are not C.

07/20/12 Safe arrays and pointers for C - DRAFT 13

Limitations

This approach still doesn't solve the dangling-pointer problem. There's no good way to do that without
more memory management machinery behind the scenes. The goal here was to avoid adding hidden
machinery.

07/20/12 Safe arrays and pointers for C - DRAFT 14

Appendix 1 – Examples

From the UNIX/POSIX API:

Original function declarations:

int read(int fd, char* buf, size_t n);

New form:

int read(int fd, char (&)buf[n], size_t n);

This is size-safe when called from new code, and compatible with old code that passes a “char*” as a
parameter.

From Numerical Recipes in C, Gauss-Jordan elimination:

Original function declaration:

void gaussj(float **a, int n, float **b, int m);

New form:

void gaussj(float (a&)[n][n], int n, float (&b)[n][m], int m);

In the original, the array bounds have to be explained in comments.

(More to follow)

07/20/12 Safe arrays and pointers for C - DRAFT 15

	Safe arrays and pointers for C
	Introduction
	Scope
	Summary of language changes
	Relaxation of existing restrictions
	Features imported from C++11
	New reserved words
	New predefined functions
	New pragma
	New restrictions (non-strict mode)
	New restrictions (strict mode)

	Rationale
	Goals
	Previous work
	Fixed-size arrays in C and C++
	C99 dynamically sized arrays
	Known-size arrays.
	Why references?
	Strict mode
	Implications of known-size arrays
	How array size information is stored
	Reference declarations
	Casts
	Dynamic allocation (“malloc” and its friends)
	Initialization of dynamically allocated space
	Associating length with an array pointer in a structure
	A struct with an array as the last component

	Impact on other language features
	Unions
	Multidimensional arrays
	Pointer arithmetic
	String constants
	Standard library safety
	Subscript checking

	Convenience features
	“auto” storage type as in C++ 20xx.
	“lengthof”
	Iteration over an array
	Subarray syntax

	Conclusion
	Alternatives
	Limitations

	Appendix 1 – Examples
	From the UNIX/POSIX API:
	From Numerical Recipes in C, Gauss-Jordan elimination:

