
- 1 -



Pascal-F Verifier
User’s Manual

Version 2

by Scott D. Johnson and John Nagle



Pascal-F Verifier
User’s Manual

Version 2

by Scott D. Johnson and John Nagle

Ford Aerospace &
Communications Corporation
Western Development
Laboratories Division

3939 Fabian Way
Palo Alto, California 94303



Permission is hereby given to modify or use, but not for profit, any or all of this program provided that this
copyright notice is included:

Copyright 19105

Ford Motor Company
The American Road
Dearborn, Michigan 48121

This work was supported by the Long Range Research Program of the Ford Motor Company, and was
carried out at Ford Scientific Research Labs in Dearborn, Michigan and Ford Aerospace and
Communications Corporation’s Western Development Laboratories in Palo Alto, California.

Printing of 11/6/105.



This is the user’s manual for the second release of the Pascal-F Verifier. The current version of the system
operates on VAX and SUN systems running Berkeley UNIX.

Comments and trouble reports should be addressed to

Division Software Technology and Support
Mail Station X20
Ford Aerospace and Communications Corporation
3939 Fabian Way
Palo Alto, CA 94303.

or

verifier@FORD-WDL1.ARPA

on the Internet.

1. An introduction to verification

Verifiers are not yet common software tools.For this reason, a substantial amount of
explanation is in order. This manual is addressed to the professional programmer
involved in the production of high-reliability software. Acquaintancewith Pascal-F is
assumed; acquaintance with verification is not. No specific mathematical background
beyond that necessary to comprehend a Pascal-like language is assumed. Users who are
uncomfortable with formal mathematics in any form, however, will find using the Verifier
rather heavy going.

There has been a certain mystique associated with verification. Verification is often
viewed as either an academic curiosity or as a subject incomprehensible by mere
programmers. Itis neither. Verification is not easy, but then, neither is writing reliable
computer programs. More than anything else, verifying a program requires that one have
a very clear understanding of the program’s desired behavior. It is not verification that is
hard to understand; verification is fundamentally simple. It isreally understanding
programs that can be hard.

1.1 Whata verifier is and what it can and cannot do

A verifier is a computer program, or set of computer programs.It examines other
programs and tries to prove that they meet specified criteria. Some of these criteria are
implied by the language in which the program is written. Others are supplied by the
programmer or the system designer. It is the task of the verifier to try to show that the



program always meets the stated criteria, no matter what data or conditions the program
is faced with, provided only that the program is faithfully executed by the computer.

This task is not an easy one.It is much more difficult than, for example, checking that a
program is syntactically correct.Showing that the program works for all cases requires a
much more powerful approach than testing, simply because for programs of any
complexity, exhaustive testing requires numbers of test cases that are far too large for
there to be any hope of trying all of them.

Verifiers attack this problem by turning a program and its criteria for correctness into a
large number of mathematical formulas, and then trying to prove that all these formulas
always hold. When the criteria for correctness can be expressed mathematically, this
approach is very useful. When the criteria for correctness are not easy to define, the
approach is of limited use.

Fortunately, it is quite straightforward to express mathematically the concept of a
program ‘‘blowing up at run-time.’’ E rrors that a run-time system for a language can
catch, such as subscripting out of range, exceeding the allowed range of a variable, and
referencing a variable that has not yet been assigned a value, are easy to define
mathematically. Unlike a run-time system, which can only detect these errors when they
occur, a verifier can detect these errorsbeforethey occur.

The first step in any sound verification is to show that no run-time errors occur. Some
verifiers do not bother with this step, but assume, for example, that integer variables can
contain any value and that arrays have infinite dimensions. While such verifiers are
useful as research tools, one cannot place much confidence in a result of ‘no errors found’
from such a verifier.

Ideally, verifying that a program cannot generate a run-time error should not require any
help from the programmer, since the program contains sufficient information to decide
this question.However, our verification tools are not sophisticated enough to do this
checking without help.

The first step of verification is the translation of the question of the correctness of a
program into a collection of mathematical formulas. This process is complex, but it is no
worse than that of translating the program into object code, which is performed by a
compiler. The hard part of verification is constructing proofs that the formulas are true,
or discovering that they are false.

Early attempts at verification required users to write out proofs by hand, just as
mathematicians have done for centuries. Other people read over the proofs and checked
them. Thisapproach didn’t work very well. It worked about as well as desk checking of
programs does.A number of supposed program proofs published in various professional
journals have been found to contain errors.

The next step was automatic proof checking.In this mode, people worked out their
proofs at computer terminals, with the computer checking each step of the process.This
approach is reliable, but it is slow and expensive. It has not been much used because of
the high labor cost.

Fully automatic generation of proofs is the ultimate goal.Success has been achieved for



certain kinds of problems. Researchers are trying to extend the range of problems that
can be handled automatically. There are good, fast techniques for a useful class of simple
problems. Othermore powerful (though much slower) techniques can be used on a larger
class of problems. Research continues in this area.

A number of automatic theorem proving programs have been written. All verification
systems in serious use today use automatic theorem provers. However, verifiers are
usually unable to prove programs correct without substantial help from the programmer,
because of limitations of these theorem provers. It is this fact that keeps verifiers from
coming into widespread use.

Fortunately, the mathematics in real-time programs and system programs tends not to be
very advanced. Morestatements look like

x := x + 1 ;

than

x := ( -b + sqrt(b**2 - 4*a*c)) / (2*a);

This fact makes verification of these programs tractable even with today’s theorem
provers.

We can attempt to verify any condition that can be expressed in the form of a computable
Boolean expression that is always supposed to be true at some point in the program.
Such conditions are calledassertions.A typical assertion would be

ASSERT x > y;

One can compare this with a run-time check of the form

IF NOT (x > y) THEN ABORT;

If correct operation of the program requires that x be greater than y when control reaches
this statement, we would like to be convinced that the ABORT will never occur. A
verifier can often generate a proof that the assertion is true whenever control reaches the
ASSERT statement.

Verifiers generally are not very good at diagnosing why a program cannot be verified.
When a verifier says a program is correct according to its rules, then either the program is
correct or the verifier is not working properly. (Sadly, an error in the verifier, as well as a
compiler error resulting in incorrectly generated object code, are always possibilities.)
However, when a verifier fails to prove a program correct, the program may not be in
error. It may simply be that the verifier needs more help from the programmer, or that
some of the help already given is misleading. Itis not always possible for the verifier to
diagnose the problem in a concise form. But the verifier can usually point out which
section of code is giving trouble.Beyond that, the typical verifier merely lets the
programmer see the formula that it is trying to prove and lets the programmer try to figure
out what is wrong. This level of diagnostic can be annoying, but is really no harder than



debugging.

Verification is an iterative process. Onesubmits the program to a verification system,
gets some error messages, fixes the errors, and tries again until all the errors are gone.
Because verifiers tend to be rather slow, facilities for reverifying only the parts that have
changed are often provided. Thisfeature is akin to being able to recompile only part of a
program after making a change, and speeds up debugging substantially.

In time, verification may become a routine part of programming.At present, it is an area
of active research, but the techniques of verification have been used only on a few
projects. Inmost cases, the software tools needed to use verification on real projects have
been lacking. This fact has retarded the acceptance of verification as a means of
improving the quality of programs.

1.2 ThePascal-F Verifier and its powers

The Pascal-F Verifier is designed to be used to improve the reliability of medium-sized
real-time programs written in Pascal-F. Its power is generally adequate to check
programs for absence of run-time errors.Higher-level constraints may be also be
submitted for verification, and an attempt will be made to verify them, but there are limits
on the complexity of the relations that can be verified.

The Verifier operates on a dialect of Pascal-F that has been augmented with language
features used to provide additional information to the Verifier. These extensions are
described in Chapter 2. The assertions required to verify a program are placed in the
program text itself; there is no separate specification file.An extended version of the
Pascal-F compiler is available which will accept but ignore the verification statements,
allowing verified programs to be compiled without change.

The basic units of verification are the procedure, function, monitor, module, and main
program. Collectively, we call theseprogram units. We also refer to procedures and
functions asroutines. Each program unit is verified in isolation, using previously stored
information about all other relevant procedures and variables. Theinformation stored for
each program unit is

• The name, formal argument list, and result type

• The ENTRY and EXIT assertions

• The INVARIANT assertions

• The list of global variables referenced

• The list of global variables altered

• The list of all routines called, and the arguments to each call

• Information concerning multiprogramming.

These items define theinterfaceof the routine. The only information about a routine
available when verifying its callers is the interface. Thereforeall the information about
what a routine does must be included in the EXIT assertions, and all the information
about what a routine needs must be included in the ENTRY assertions.



Before verifying a program, the verifier checks the program for violations of the rules
given in chapter 2. This is referred to aspreverification checking. Once all parts of a
program have passed these tests, which in themselves may show up program ‘‘bugs’’, the
actual verification process begins. TheVerifier generates assertions for all statements that
could cause overflows, out-of-range subscripts, references to variables not yet assigned a
value, or other run-time errors.Formulas calledverification conditionsare generated for
all these assertions and for the user’s assertions. Attemptsare made to prove all the
verification conditions using an automatic theorem prover. Diagnostic messages are
generated for all unproven conditions.

It is expected that the user will want to alter the program being verified and to attempt
reverification. TheVerifier maintains a file that minimizes the amount of work required
when reverifying a program. The units of reverification are the procedure, function,
monitor, and module. In general a change made within a program unit will not require
reverification of parts of the program outside that unit unless the interface of the unit is
altered by the user.

2. Writing verifiable Pascal-F

Programs to be verified must in a sense be ‘‘understood’’ by the Verifier, for which it
needs a substantial amount of help from the programmer. Most of this help is supplied in
the form of special statements embedded in the text of the program. These statements are
meaningless to the Pascal-F compiler (though the compiler will recognize and ignore
them), but to the Verifier they supply information about how the program works.

2.1 TheVerifier’ s view of Pascal-F

The Verifier needs additional information beyond the Pascal-F statements needed to
produce a running program. The basic form of additional information is the assertion.
An assertion is a Boolean expression (that is, one whose value is true or false) that is
supposed to be true whenever some point in the program is reached.A typical assertion
is

ASSERT x > y;

This assertion is a claim that whenever control reaches the statement, x will be greater
than y. The Verifier will take on the task of proving that the code that leads up to the
ASSERT statement always guarantees that x is greater than y. Following the ASSERT
statement, the Verifier will assume that x is greater than y.

The Verifier does not execute programs. It examines programs and attempts to predict
their actions when executed. Thisexamination takes place based on a set of built-in
notions about the execution environment.

2.1.1 Initialization

All variables are considered to be uninitialized at start and may not be referenced before
being given a value. At program start, only constants have values. Uponentry to a
routine, all local variables are uninitialized.Everywhere that a variable is used, the
Verifier will attempt to prove that the variable has been assigned a value. For simple



variables this task is usually trivial; for arrays it is usually harder. See the section on the
DEFINED predicate for information on how to cope with arrays.

2.1.2 Ranges

All types have finite bounds.For subrange types, these are explicit. The bounds of the
type INTEGER are from -32768 to 32767; these bounds are determined by the 16-bit
hardware arithmetic used in the implementation of Pascal-F. Everything that has a
numeric value thus has a subrange associated with it.All variables that have been
initialized are assumed to be within range.Hence, all actions that change the value of a
variable must be checked for out-of-range conditions.

2.1.3 Multiprogramming

The Verifier views programs as if control can be taken away from the current process
only at certain points called ‘‘singular points.’’ T he singular points are at SEND and
WAIT statements and places where a process calls a routine exported from a different
monitor. This assumption allows the Verifier to process all other parts of programs as if
they are purely sequential.

This assumption is a simplification of reality, since processes can be pre-empted when
interrupts occur. Howev er, since no monitor is allowed to access a variable that is
declared in a different monitor, the fact that there is preemption can be ignored because
the preempted process cannot detect that it was preempted.

Normally, the Verifier can assume that any variable not altered by a statement does not
change. Whena process P encounters a singular point, this assumption is not valid. At
those points P can be interrupted by other processes that can alter variables that P is
allowed to read. When a process reaches a singular point, monitor variables visible to
that process are assumed to be given new values that are consistent with the monitor
invariant. Thus,the monitor invariant must be strong enough to contain all the necessary
information about the values the monitor variables will contain whenever the monitor is
entered or left.

The restrictions necessary to make this simplified model of multiprogramming work are
enforced by the Verifier during the preverification checking phase.A style of
programming in which shared variables are accessed only by routines declared within
monitors is required.This style of programming is strongly recommended by various
structured programming enthusiasts, including Hoare [HOARE74] but it tends to result in
programs with many tiny routines. Efficient implementation of such programs will
require additional optimization support in the compiler.

2.1.4 Devices

In Pascal-F, devices have the syntax of variables, but very different semantics.The
Verifier treats devices as procedures. Given the definitions



TYPE atod = DEVICE (* A to D converter *)
channel: 0..15; (* used to select channel *)
data: 0..2047; (* returns data value *)

END;

the program fragment

atod.channel := 2; (* select A/D channel *)
tab[2] := atod.data; (* read A/D value *)

is treated by the Verifier much as if the program read

atodchannel(2); (* select A/D channel *)
atoddata(tab[2]); (* read A/D value *)

and atodchannel and atoddata were procedures.The Verifier makes no assumptions
about the values returned by devices other than that values returned from devices are
assumed to be in the range declared in the DEVICE declaration.Thus, DEVICE ranges
should include the entire range of values that the device is electrically capable of
producing. The Verifier assumes that the hardware has been correctly described by the
programmer.

2.1.5 Enforcement

In this chapter are a number of restrictions on the way in which Pascal-F programs
intended for verification may be written. The Verifier checks and enforces all of these
restrictions before proceeding with verification. Thisstep is referred to as preverification
checking.

2.2 Extensionsto Pascal-F for verification

2.2.1 Verification statements

The statements described here have no effect on the behavior of the program.They serve
only as a documentation aid, to help the Verifier (and the human reader) understand the
operation of the program.

Because verification statements are not allowed to call have any effect on the program,
they cannot contain calls to functions that have side effects.

2.2.1.1 TheASSERT statement

ASSERT ( <Boolean expression list> ) ;

This is the basic verification statement. An ASSERT statement is a claim that the given
expressions are true whenever control reaches the statement. The Verifier will attempt to



prove this claim. Like all verification statements, the ASSERT statement has no effect on
program execution.

2.2.1.2 TheSTATE statement

STATE ( <Boolean expression list> ) ;

The STATE statement may only be written within the body of a loop, and represents the
loop invariant of the loop. The Boolean expressions in the STATE statement must be true
ev ery time the STATE statement is reached.The Verifier uses the STATE statement as the
place at which it will begin and end analysis of the loop. Each Boolean expression in the
STATE statement is verified for the path around the loop and for the path into the loop.
For the path around the loop, the path tracing starts at the STATE statement, goes around
the loop once (backwards) and ends at the same STATE statement. Thus,the Boolean
expression list must include all important information about variables that are changed by
the loop body, but it need not mention variables that are left untouched. More advice on
the use of the STATE statement appears in the section ‘‘What to do when a verification
fails’’.

One (and only one) STATE statement must be written for every loop. The statement must
contained in the loop body, at the top level. That is, if the loop body contains any
compound statements then the STATE statement for the loop must appear outside those
statements.

2.2.1.3 TheMEASURE statement

MEASURE ( <numeric expression> ) ;

The MEASURE statement is used to prove that loops terminate.Every WHILE and
REPEAT loop (except for deliberate infinite loops, which must begin with "WHILE true
DO" or end with ‘‘UNTIL false;’’) must contain a MEASURE statement.The
MEASURE statement must immediately follow the STATE statement associated with the
loop. The<numeric expression> is a limit on the number of iterations of the loop body
left to be performed.More specifically, the Verifier will insist that the value of the
expression

• be greater than or equal to zero when control reaches the MEASURE statement,
and

• decrease by at least one (for integers) or the precision of the expression (for fixed
point numbers) each time control flows from the MEASURE statement around the
loop back to the STATE statement.

How complex a MEASURE statement is required is a function of how obvious it is that
the loop always terminates. FOR loops always terminate, and no MEASURE statement
is used. If a loop uses a counter of one form or another, the MEASURE statement will



contain a simple expression involving the counter. For example, if the loop is counting i
from 1 to 100, "MEASURE 100−i" would be a good choice. If the fact that a loop
terminates is subtle, a complicated MEASURE statement, perhaps one involving EXTRA
variables, will be necessary. If the loop does not terminate under some circumstances, no
MEASURE statement, no matter how complex, will be accepted by the Verifier.

2.3 Newexpressions

The Verifier allows the use of some new constructs for building expressions. Someof
these constructs can be used only in the special verification that will be described; others
can be used in executable statements as well.

2.3.0.1 TheDEFINED predicate

DEFINED(<variable>)

DEFINED(<array>,<low bound>,<high bound>)

DEFINED(<block name>)

DEFINED is a generic, built-in function that can be applied to any variable or part thereof
and returns a Boolean value. DEFINEDcannot be used in executable statements.A
variable is said to be DEFINED whenever it is guaranteed to have a meaningful value.
The following rules are used to determine whether an expression is DEFINED:

• All constants are DEFINED, including VALUE constants.

• Values obtained from DEVICE variables are DEFINED.

• A record variable is DEFINED if and only if all the fields of the record are
DEFINED.

• An array variable is DEFINED if and only if all the entries of the array are
DEFINED.

• A variable is DEFINED after it has been used on the left side of an assignment
statement in which the right side was DEFINED.

• At the beginning of the body of a FOR loop, the index variable is DEFINED.

• A subscripted variable is DEFINED if the subscript is DEFINED, the subscript is
in the range of the array bounds, and the specific array element being referenced is
DEFINED.

Once a variable is DEFINED it remains DEFINED, unless an operation is performed that
results in the variable receiving an indeterminate value. Only the following
circumstances can result in a variable not being DEFINED:

• The variable is used in an index statement of a FOR loop is not DEFINED when
the loop terminates.



• Immediately after the tag field of a variant record is changed, all the other fields in
that record are no longer DEFINED.

The second form of DEFINED is used to test the definedness of portions of an array. The
form

DEFINED(tab,i,j)

is true if the arraytab has all elements DEFINED for elements with subscripts betweeni
andj inclusive. This form is often used in loop invariants, inside the STATE statement.

The DEFINED predicate can also be applied to monitors and modules, as in the third
form given above, but it has a slightly different meaning. If an INVARIANT has been
declared for the monitor or module, the invariant is expected to hold whenever the
construct is entered or left.There must be one exception to this rule, however. Since no
variables are DEFINED when the program begins execution, the invariant cannot be
expected to hold. It is the responsibility of the statements in the body of the monitor or
module to initially establish the invariant. If m is a monitor or module, then
DEFINED(m) is TRUE whenever m has been initialized. No routine exported from a
monitor or module may be called unless DEFINED(m) is true.

2.3.0.2 TheOLD annotation

At the beginning of every procedure and function, the Verifier implicitly saves the value
at entry of every variable used as an input to the routine.In assertions, it is possible to
refer to these values by placing an.OLD following a variable name or selector
expression. Thus,if X is a parameter or variable, X.OLD denotes the value the
parameter or variable had when the routine was entered. Old values of array variables are
referenced with forms such asX.[3].OLD for an array reference, or
X.FIELDNAME.OLD for field references. OLD may only be used within verification
statements and PROOF statements, since this saving of OLD values does not occur in the
running program.

The chief use of OLD is as a specification tool.For example, suppose one wanted to
write a procedure to increment the value of a variable by one. The interface for this
procedure might be

TYPE smallint = 1..100;
PROCEDURE bump(VAR x: smallint);
ENTRY x < 100;
EXIT x = x.OLD + 1;

2.3.0.3 TheIMPLIES operator

A new Boolean operator IMPLIES is added to the language.Informally, the expression
p IMPLIES q means, "if p is TRUE, then q will be TRUE as well." If p and q are
Boolean expressions, then pIMPLIES qhas the value TRUE if p is FALSE or q is TRUE,
and it has the value FALSE in all other cases.For purposes of precedence, IMPLIES is
considered to be a relational operator.



The IMPLIES operator is for the most part used in verification statements, but it may be
used in executable statements as well.Because it happens to be the case that
FALSE <= TRUE, every IMPLIES operator in Pascal-F can be replaced by the operator
<= without changing the meaning of the program.This practice is not advised, since the
resulting program will be harder to read than the one using IMPLIES.

2.3.1 Verification declarations

To verify a program, more information about each routine is needed than what is
necessary to compile a program. The Verifier expects routine headers that are more
complex than those of standard Pascal. Theextended syntax is:

<block> ::= <entry declaration part>
<exit declaration part>
<effect declaration part>
<invariant declaration part>
<depth declaration part>
<constant declaration part>
<type declaration part>
<variable declaration part>
<statement part>

Each declaration part is either empty, or consists of a keyword followed by a series of
declarations, each of which is followed by a semicolon.The declarations that are not part
of standard Pascal are explained in this section.

2.3.1.1 TheENTRY declaration section

ENTRY <Boolean expression series>;

The Boolean expressions given in this section are assertions that must be TRUE whenever
the routine is called.The scope rules of Pascal-F prevent the Boolean expressions from
containing variables other than parameters of the routine and variables global to the
routine. Ina routine exported from a module, ENTRY assertions cannot use variables
local to the module. The purpose of the ENTRY section is to state restrictions on the
values of these variables.

ENTRY assertions are a form of documentation as well as a verification requirement.
Instead of writing "This procedure may only be called when filesopen is 0" in a comment,
one writes

ENTRY filesopen = 0;

Some ENTRY assertions are automatically generated for each routine.



• For each value argument, an assertion is generated that the argument is DEFINED.

• For routines that are exported from a monitor or module m, an ENTRY assertion is
generated consisting of the invariants for m.

Whenever a variable is given a value, the Verifier checks that the value is appropriate to
the type of the variable. Therefore,any variable that is DEFINED has a value that is
appropriate to its type. Therefore is not necessary to write ENTRY assertions that state
that a parameter has a value appropriate for its subrange type.

When a variablev is passed to aVAR parameterp and used as an input variable, the
Verifier automatically addsDEFINED(p) to the ENTRY conditions of the routine being
called. Similarly, for a VAR output variable,DEFINED(p) would be added to the EXIT
conditions. Thisautomatic insertion ofDEFINED predicates can be overridden by
mentioning the formal argument involved in a user-suppliedDEFINED in an ENTRY or
EXIT condition. A common case in which the user must override the Verifier’s automatic
insertion is shown below.

PROCEDURE search(var n: integer);
ENTRY DEFINED(n) = DEFINED(n);
EXIT DEFINED(n);
BEGIN

n := 0 ;
WHILE (n < 100) AND (tab[n] <> 0) DO BEGIN

STATE(defined(n), defined(tab));
n := n + 1 ;
END;

END;

Here, we do not want to require thatn be DEFINED at entry tosearch, but n appears to
be an output variable since there are references to it within the procedure. The use of

DEFINED(n) = DEFINED(n)

prevents the Verifier from adding a requirement thatn be DEFINED at input, but does not
impose any requirement of its own.

There are rare cases in which a parameter p is only sometimes used for input depending
on the values of the other parameters are. In this case, an ENTRY assertion of the form

C I MPLIES DEFINED(p)

should be used, where C is the condition under which the variable is read. Routines that
have array or record VAR parameters may need complex ENTRY assertions indicating
which portions of the array must be DEFINED at entry.

Monitors and modules may have ENTRY declaration sections.These refer to the
initialization block of the monitor or module.For monitors and modules, the assertions
in the ENTRY section must be true when the INIT statement for the monitor is executed,



and will be assumed true at the beginning of the initialization part of the block.

2.3.1.2 TheEXIT declaration section

EXIT <Boolean expression series>;

The EXIT declarations define the state of the program upon exit from a routine by giving
assertions that will be true at that time. The scope rules of Pascal-F limit the variables
allowed in an ENTRY assertion to parameters and variables global to the routine.An
additional restriction enforced is that value parameters cannot appear in an EXIT
assertion, except as fields of the recordOLD.

EXIT assertions tend to be long and complex, because everything that the routine does
that is of importance to the caller must be described in the EXIT assertions.In some
cases the EXIT assertions may be as long as the body of the routine.

If a routine has a VAR parameter p that is used for output,DEFINED(p) must be
included among the EXIT assertions. If the parameter is only used for output some of the
time, the situation must be described in an EXIT assertion of the form

C I MPLIES DEFINED(p)

where C is the condition under which p is used for output.If p is an array or record and
only part of p is written, the situation must be described using more complex EXIT
assertion.

2.3.1.3 TheEFFECT declaration section

EFFECT <Boolean expression series>;

This declaration may only appear in a routine that is exported from a module.An
EFFECT assertion is similar to an EXIT assertion, except that EFFECT assertions cannot
contain references to variables local to the module.

Upon return from a ‘‘regular’’ routine (that is, one that is not part of a module) the
Verifier uses the fact that the EXIT assertions (with actual arguments replacing formal
parameters) for that routine are true.However, if the routine is exported from a module
and called from outside the module, its EXIT assertions cannot be used since they may
contain variables not visible to the caller. Instead, the EFFECT assertions are used by the
Verifier. These assertions cannot contain variables local to the monitor. If a routine
exported from a monitor is referenced from within the monitor, both EXIT and EFFECT
assertions are used.

The following example shows how OLD, ENTRY, EXIT, and EFFECT are used to
specify a module. The module also contains an INVARIANT declaration. INVARIANT
declarations are explained in the next section.



MODULE stack;
EXPORTS size, push, pop;
VAR stp: 0..maxsize;

buf: array [1..maxsize] of stackelt;

EFFECT size = 0;

INVARIANT FOR x: 1..maxsize
ALL x<stp IMPLIES DEFINED(buf[x]);

PROOF FUNCTION size: 0..maxsize;
EXIT size = stp;
BEGIN size := stp END;

PROCEDURE push(x: stackelt);
ENTRY size < maxsize;
EFFECT size = OLD.size + 1;
BEGIN stp := stp + 1;

buf[stp] := x
END;

FUNCTION pop: stackelt;
ENTRY size > 0;
EFFECT size = OLD.size - 1;
BEGIN pop := buf[stp];

stp := stp - 1
END;

BEGIN stp := 0 END;

A few things should be noted about this example. TheENTRY assertions indicate under
what conditions each routine can be called.They are written in terms of the proof
function size. The EFFECT declarations describe what each routine does to size so that
the users of the module can tell when it is valid to call push and pop. The EXIT
assertion in size is used by the Verifier to translate the ENTRY and EFFECT assertions in
push and pop into assertions about the variable stp, which is (unbeknownst to the
caller) changed by those routines.

2.3.1.4 TheINVARIANT declaration

INVARIANT <Boolean expression series>;

The assertions given in an INVARIANT declaration are required to hold at multiple
points in a program.



• Putting an INVARIANT P in a routine is equivalent to putting ASSERT P
statements at the beginning of the routine (i.e. as an ENTRY assertion), the end of
the routine (as an EXIT assertion), before and after each WAIT statement in the
routine, and before and after each call to another routine.

• Putting an INVARIANT P in a MONITOR is equivalent to putting ASSERT P
statements at the end of the monitor block, before and after each WAIT statement
in the monitor, before and after each call to a routine outside the monitor, and
adding P as an INVARIANT assertion to each routine exported from the monitor.
Note that an ASSERT P is not added to the beginning of the monitor block; the
invariant is not assumed to hold until the monitor has been initialized.

• If the declaration INVARIANT P is put into a MODULE, the only variables on
which P can depend are those local to the MODULE. The assertion P must be true
at the end of the initialization block of the MODULE, before and after each WAIT
statement in the module, before and after each call to a routine outside the module,
and at the beginning and end of each routine exported from the MONITOR.

In other words, if an assertion P is declared to be an INVARIANT of a construct, P must
be true whenever control passes into or out of that construct.

2.3.1.5 TheDEPTH declaration

A recursive routine R1 is one that can call R2, which in turn calls R3, and so on until R1
is called again. A special case of recursion is a routine that calls itself.When a program
uses recursion, it is necessary to prove that it is impossible to initiate an endless sequence
of routine calls, none of which ever returns.

Every recursive routine must contain a DEPTH declaration of the form:

DEPTH <integer expression>;

By the scope restrictions of Pascal-F, the integer expression may only contain parameters
of and variables global to the routine. Note that a fixed point expression cannot be used.

The DEPTH expression is an indication of how much time will be used by the routine.
The ENTRY assertion for the routine must be strong enough to imply that the DEPTH
expression is nonnegative whenever the routine is called.

From a recursive routine R1 two kinds of calls to other routines are possible. If R1 calls
itself, or if it calls a routine R2 that can initiate a chain of routine calls that eventually
leads to R1 being called again, the call is said to be a recursive call. Otherwise,the call is
said to be nonrecursive.

Wherever a recursive routine R1 makes a recursive call to a routine R2 (a special case is
when R1 and R2 are the same routine), it must be established that an infinite chain of
calls is not being initiated.Let d1 be the value (at the time R1 was called) of the DEPTH
expression declared for R1.Similarly, let d2 be the value (at the time R2 is being called)
of the DEPTH expression declared for R2. The Verifier will attempt to prove that d2 is
strictly less than d1. If this condition is proved for every recursive call, then each call in a
chain must perform a successively easier task, so that every use of recursion must



ev entually terminate.

2.3.2 EXTRA variables and PROOF statements

Quite often, it is not easy to demonstrate to the Verifier that a program works. One
method of simplifying this task is to demonstrate that a program with some ‘debug code’
added works. For example, in proving that a linked list is correctly linked, it is easier to
prove that a doubly-linked list is correct than that a singly-linked list is correct, because
in the doubly-linked case, an invariant can be stated that claims that the operations of
inserting and deleting from the list keep the backward and forward links consistent.
Consistency for a singly-linked list is harder to define.

In a case such as the above, implementing a doubly-linked list may not be necessary for
the operation of the program, but may be desirable for verification. EXTRAvariables,
for use in assertions, and PROOF statements, for manipulating EXTRA variables, are
useful in such situations.

2.3.2.1 TheEXTRA variable attribute

<variable name list>: EXTRA <type>;

The EXTRA attribute may be used in VAR declarations, in formal parameter
declarations, and in RECORD definitions. The type of the result of a function may not
have the EXTRA attribute. Ineach case, the attribute denotes a variable, parameter, or
record field that is to be used for proof purposes only. That is, EXTRA variables must be
used in such a way that all the EXTRA information can be removed from a program
without affecting its execution. Seethe section on PROOF statements for more details.

2.3.2.2 TheEXTRA function and procedure attribute

EXTRA FUNCTION <function definition>

EXTRA PROCEDURE <procedure definition>

Functions and procedures designated as EXTRA are solely for use in PROOF statements
and assertions.Every parameter to an EXTRA routine is implicitly an EXTRA variable,
and every statement in the routine is implicitly a PROOF statement.

2.3.2.3 RULE functions

RULE FUNCTION <function definition> BEGIN END;

Functions may be declared as RULE functions for use in proof rules. Such function
definitions have no body.



Rule functions are used when an expression is needed in an assertion but the needed
expression cannot be written as a simple Pascal-F expression. Theuse of rule functions
is covered in detail in the chapter on rules.

Rule functions are restricted to results of typesinteger, char, andboolean. Arguments to
rule functions may be declared as any valid Pascal-F type.

2.3.2.4 ThePROOF statement

PROOF <statement>

Any executable statement, even a compound statement, may be turned into a PROOF
statement by preceding the statement with the keyword PROOF. Such statements are
ignored by the compiler. PROOF statements are used to manipulate EXTRA variables
and to control conditional execution of other PROOF statements. The removal of all
PROOF statements and EXTRA variables from a program must not change the execution
of the program. The Verifier checks this restriction by enforcing rules that prevent any
PROOF statement from affecting any non-PROOF variable.

Any expression containing an EXTRA variable will be referred to as a ‘proof expression’.
The specific restrictions imposed to prevent PROOF statements and expressions from
affecting program execution are as follows.

• Proof expressions may not contain calls to non-EXTRA functions that have side
effects (other than the modification of EXTRA variables).

• Proof expressions can only be used in PROOF statements and as arguments to
routines. Thefollowing parameter matching rules must be observed when calling
non-EXTRA routines:

• If a formal value parameter of a routine is an EXTRA variable, the
corresponding argument cannot have any side effects (other than the
modification of EXTRA variables).

• If a formal VAR parameter of a routine is an EXTRA variable, the
corresponding argument must also be an EXTRA variable.

• If a formal parameter is not an EXTRA variable, the corresponding argument
must not contain any EXTRA variables.

• EXTRA functions and procedures may be called only from within PROOF
statements.

• Non-EXTRA variables may not be modified in any way by PROOF statements.
This restriction applies to assignment statements, FOR loops, and routine calls.

• The multiprogramming statements WAIT, SEND, and INIT are forbidden in
PROOF statements.

Study of the sample engine control program in Chapter 4, which contains a number of
EXTRA variables, will give some insight into the use of this language feature.



2.4 Restrictionson Pascal-F programs

The restrictions given here are imposed to make the task performed by the Verifier easier.
In most cases, the restrictions are in line with good programming practice.However, the
concern here is not style but verifiability. A construct is prohibited only when there is
some specific problem in handling that construct.

2.4.1 Restrictionson program structure

• The only legitimate ways to write non-terminating loops for a process is

WHILE true DO BEGIN <loop body> END;
or

REPEAT <loop body> UNTIL true;

This construct may not appear within any other control structure. This restriction is
imposed so that the Verifier can discriminate between accidental and deliberate
non-terminating loops.

• The iteration variable of a FOR loop may not be modified from within the loop.
Further, the value of the iteration variable is not DEFINED after the loop
terminates. TheVerifier issues an error message whenever a variable that is not
DEFINED is accessed.

2.4.2 Restrictionson variant records

Variant records are not permitted by the verifier.

2.4.3 Restrictionson exception handling

Pascal-F incorporates a powerful exception handling mechanism similar to that in Ada.
This version of the Verifier operates on the assumption that exception handlers are not
used in normal operation and enforces the following rules.

• The RAISE statement, for exception handling, is considered to be a mechanism for
recovering from hardware errors only. The Verifier will try to prove that no RAISE
statement is ever executed.

• Exception handling routines are not examined.

2.4.4 Aliasingand side effects

Aliasing and side effects are two related phenomena that make programs difficult to
understand and verify. Aliasing is the condition in which two names refer to the same
variable. Aside effect occurs when a function modifies one of its parameters or a global
variable. TheVerifier enforces restrictions that prevent variables from being changed in a
fashion that it cannot detect, or in such a fashion that the resulting value of the modified
variable depends of the order of evaluation.

The following program contains an example of aliasing.



PROGRAM pr;
VAR x: 1..100;

PROCEDURE p(VAR a: 1..100);
BEGIN

a := 1 ;
x := 2 ;
ASSERT(a = 1);

END;
BEGIN

p(x);
END pr.

Procedure p, viewed in isolation, is valid. Thevariable ‘a’ is clearly 1 after the body of
the procedure has been executed. However, the call ‘p(x)’ causes the variables ‘a’ and ‘x’
to refer to the same variable within the procedure ‘p’. The assignment to ‘x’ will
therefore change‘a’ at the same time, and the assertion ‘a = 1’ will not be valid.

Because this sort of thing is far more often a cause of error than a useful feature of the
language, it is prohibited.

When a function is called, VAR parameters of the function or variables global to the
function can be modified. The modification of a variable by a function is called a "side
effect" because the modification is usually not the primary purpose of the statement in
which the function is called.Generally, programming with side effects is a dangerous
practice because it is easy to forget that the side effect will take place.

This danger is diminished when using the Verifier, since the Verifier will detect side
effects. However, there is a class of side effects whose result depends on the order of
evaluation in expressions. Asan example, suppose the functions f and g set their
arguments to 1 and 2, respectively. The value given to x by the statement:

y := f (x) + g(x)

depends on whether the call to f or g is evaluated first. The Verifier allows statements to
have side effects only if it can determine that the results of the side effects are
independent of the order of evaluation in expressions.

The programmer can use the following simple rules to avoid problems with aliasing and
side effects.

1. Donot pass the same variable to two different VAR parameters of a routine.

2. Donot pass a variable or any component thereof to a VAR parameter of a routine
that sets or uses the variable as a global.

3. Within a function, do not modify VAR parameters or global variables, perform
WAIT statements, or call a routine exported from a monitor, unless the function is
called only in simple assignment statements.



4. Donot use functions exported from monitors in expressions; use them only as the
right side of simple assignment statements.

The Verifier detects any violations of these rules.

2.4.5 Restrictionson multiprogramming

The restrictions required to make programs with multiple processes verifiable are
somewhat severe. Unlike the other restrictions, which generally prohibit only language
forms of little if any real use, the multiprogramming restrictions can be difficult to live
with. Theobject of these restrictions, as discussed earlier in this chapter, is to allow the
Verifier (and the programmer) to generally ignore the fact that semi-concurrent operations
are taking place.

The major restriction required to make multiprogramming work is to require that any
code referencing a static variable must be at the same priority as the variable. InPascal-
F, this is easy to enforce, because both the priority of both code and static variables is
determined strictly by the priority of the module in which they are enclosed. The rules
are as follows.

• No variable may be imported or exported from a monitor.

• A routine that has been exported from the monitor may not be called before the
monitor has been initialized with an INIT statement.

• A monitor variable may not be passed as a VAR argument to a routine outside the
monitor. (There are no restrictions on arguments passed by value.)

• A signal may not be a component of any other type.

2.5 UsingPascal-F with verification statements

2.5.1 Guidelinesfor writing verifiable programs

• Every variable should be of the minimum subrange type required for the range of
values needed.For example, if negative values are illegal for a variable, its type
should not permit negative values. Likewise, if zero is also prohibited, a positive
range should be specified. These declarations give the Verifier extra information to
use without extra writing by the programmer. They also can save space in the
object program.

• Where alternatives are mutually exclusive, use the IF - THEN - ELSE structure in
preference to consecutive IF statements so that it is clearly impossible for more
than one alternative to be executed. Properlystructuring a program holds down the
number of possible paths to be traced out.Large numbers of paths make for long
sessions with the Verifier.

• Use many short assertions instead of a few big ones. Do not lump assertions
together with AND operators. The diagnostic messages, which refer to individual
assertions, will then be more useful.



• Because many diagnostic messages are line-number oriented, it helps to put only
one assertion on a source line.

• When writing loops, remember to use a STATE statement to describe what the state
is after each iteration.Keeping the loop simple eases the difficult task of writing
loop state assertions.

• The Verifier can make better deductions about addition and subtraction than it can
about multiplication and division. It will be quite difficult to verify anything that
depends on more than the most obvious properties of multiplication and division.
Multiplication by constants is not a problem. The Verifier can deduce the possible
range of the result of a division, but little else.

• Av oid scaling fixed-point operations so that truncation occurs. The Verifier can
deduce the possible range of the result of a truncation, but little else.

• When progressing through an array with a loop, use a FOR loop unless early exit
from the loop is planned. The Verifier supplies the proofs that FOR loops
terminate.

• When processes at different priorities must communicate, one process will have to
call a routine in another module to access any shared variables. Thisrestriction is
an incentive to reduce access to shared variables.

• Do not combine data that logically belongs to different priority code in the same
record. Doingso will force the use of access routines unnecessarily.

2.5.2 Obtainingthe most from the Verifier

Having a Verifier around encourages ‘‘defensive programming’’. Good programmers
often write error detection into programs.Unfortunately, when program space or time are
at a premium, it is not possible to put in (or in some cases leave in) all the traps for
software bugs that should be there. When these traps are written as verifiable assertions,
the checking can be done during verification, and there is no execution penalty.

In this sense, the most important defense against errors is extensive use of ENTRY
assertions. UseENTRY assertions as a documentation aid, to explain each routine to its
users. Theseassertions (and module INVARIANT assertions) can be used to protect the
routine from its callers, since the Verifier requires that the state of the system is what it is
supposed to be when the routine is called.

Once all these ENTRY assertions are verified, they should be left in the program as a
guide for those who must maintain the program.Over the long haul, one of the most
important benefits of verification is that it allows the designer of the original program to
leave behind rules about how the program is supposed to work. Theserules might be
unknown, forgotten, or ignored by future maintenance programmers, but if they are in the
program text, the Verifier will use them.

3. Usingthe verifier

The Verifier runs on Digital Equipment Corporation VAX computers under Berkeley
UNIX or Wollongong Eunice/VMS, or on SUN workstations. Thischapter contains



instructions for using the verifier.

3.1 Invoking the Verifier

The Verifier is called using the UNIX command line:

pasver [flags] <file>

This command initiates verification of the Pascal-F program in the named file. The file
name must end in.pf indicating that the file is Pascal-F source.

If the -dvcg flag is given, messages will be printed indicating the progress of the
verification, and failed verification conditions will be stored for examination by the user.
The -d flag enables all internal debugging output, and should be used when trouble
reports are submitted.

The verifier creates, in the current directory, a new directory for its scratch and history
files. Thisnew directory has the name of the program being verified, except that the
trailing .pf is replaced with_d indicating a directory. The files in this directory are used
to speed up reverifications when not all the program units of the program have been
changed. Therules associated with the verification are also stored in this directory.
Reverification is omitted for previously-verified program units when the unit is
unchanged and the program unit was successfully verified in the past.Reverifications are
much faster than original verifications.

3.2 Understandingerror messages

The verifier generates error messages during three phases of processing; syntax checking,
preverification checking, and verification. Samplesappear below. Detection of an error
during any phase prevents further phases from taking place, so only one of the three kinds
shown below will appear as output from any giv en verification attempt.

3.2.1 Syntaxerror messages

prog.pf
4. IF x < 0 T HEN x := 0)

**** 14 ˆ
14: ’;’ expected

Compilation complete - 1 errors detected
*** Pass 2 deleted ***

Pass 1 error abort.

Syntax checking in the verifier is essentially the same as the Pascal-F compiler. This is to
be expected, since the first passes of both are the same.The messages here are of the
same types one would expect from a compiler. All messages here indicate errors; there
are no ambiguities.



3.2.2 Prev erification error messages

Pass 1:
Pass 2:
xxx.pf:

9. proc1(global1);
*** Variable "global1" is already used globally by "proc1". ***
1 error.
Pass 2 error abort.

Preverification checking is performed only after the entire program has been syntax
checked, and information about procedures and global objects has been collected.This
phase is primarily a check for inconsistencies between definition and use of objects.In
addition, the restrictions necessary to make verification possible are enforced by this
phase, and some common errors which can be caught efficiently in this phase are
diagnosed. Inthe example above, there is an aliasing error; the variableglobal1 is being
passed as aVAR argument to a procedure which usesglobal1as a global variable. This
is of course forbidden, sinceproc1 will not behave as it normally would when a global
and formal variable actually refer to the same location in memory.

One line of the source program is printed with each message to reduce the need to refer to
a printed listing.

3.2.3 Verification error messages

In general, a message from this phase indicates that the possibility of a problem exists.
As discussed earlier, a change in the program or the assertions will be required to
eliminate the message.

Each message represents a proof failure along some path between a previous control
point (procedure entry, loop invariant, wait, or STATE assertion) and the line displayed.
Where more than one path exists, because of conditional statements, the path being traced
out is described. This is done by stating the choice made at each conditional statement on
the path.



Pass 1:
Pass 2:
Pass 3:

Verifying example6
Could not prove {example6.pf:18} table1[(j - 1) + 1] = 0

(ASSERT assertion)
for path:

{example6.pf:11} Start of "example6"
{example6.pf:11} FOR loop exit

Could not prove {example6.pf:14} allzero(table1,1,i)
(STATE assertion)

for path:
{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop

Could not prove {example6.pf:14} allzero(table1,1,i)
(STATE assertion)

for path:
{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop

Could not prove {example6.pf:13} allzero(table1,1,i - 1)
(ASSERT assertion)

for path:
{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop

Could not prove {example6.pf:13} allzero(table1,1,i - 1)
(ASSERT assertion)

for path:
{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop

5 errors detected

The Verifier shows which specific assertion it could not prove, and for what path through
the program proof was unsuccessful.A l isting of the Pascal-F program to which the
above messages refer appears in a later chapter.

3.3 How to proceed when a verification fails

The first attempt at a verification will produce many error messages. An orderly
approach to dealing with these will be helpful. The messages may be divided into several
classes, as shown below. Each class should be eliminated in order. When new errors
appear in a class previously eliminated, the new errors should be dealt with before
continuing work on the old.



3.3.1 Eliminatethe syntax errors

First, if any syntax errors or preverification error messages are present, they must be
eliminated before the verifier will attempt the verification phase. This is straightforward
and the messages are usually unambiguous.

3.3.2 Eliminateany definedness problems

When verification-phase messages appear, the first thing to do is to look at all messages
associated with definedness. These look like

{prog1.pf: 25} Cannot prove "x" is defined.

Messages like this indicate that the Verifier could not prove that a variable was initialized
at some point where the value of the variable was used. All errors related to definedness
should be eliminated before working on further problems. Often this will require adding
definedness assertions such as

ENTRY DEFINED(x);

to procedure and function definitions. Adding an ENTRY condition such as the one
above will usually eliminate the error message for the routine to which it is added, but
since it places a new requirement on every caller to the routine the next verification
attempt may well have new error messages concerning the callers of the routine.One
works outward until the main program is reached.

The user should be aware that the Verifier generates ENTRY and EXIT definedness
assertions internally for each procedure for each variable referenced (for ENTRY) and set
(for EXIT) in the procedure but not mentioned by the user in the ENTRY and EXIT
assertions. Thisconvenience feature handles most common cases, but can be overridden
by the user when required by mentioning the variable in aDEFINED clause. This
mechanism usually does the right thing for simple variables. For more complex variables
not fully initialized for all calls to the routine, the user will have to provide entry
conditions of his own. If, for example, at entry to a routine, the arraytab is only expected
to be initialized from 1 tox, one would write an entry assertion of the form

ENTRY DEFINED(tab,1,x);

A special case is the assignment before use of a global variable orvar argument to a
procedure or function.For example, in



procedure p(var x: integer; y: integer);
BEGIN

x := 1 ;
IF y > 0 THEN x := x + 1;

END;

the formal parameterx seems to be an input and an output variable, since it is both set and
used withinp. Here, an entry condition of the form

ENTRY DEFINED(x) = DEFINED(x);

is required.This form is essentially meaningless but turns off the built-in assumption that
x had to be DEFINED at any call to p.

3.3.3 Eliminatethe run-time safety errors

Messages referring to array bounds and variable ranges should be addressed next. Again,
it may be necessary to add ENTRY and EXIT assertions to do this. It may also be
necessary to add terms to STATE inv ariants.

3.3.4 EliminateENTRY errors

When an error message associated with an ENTRY condition appears, the message will
specify which call to the routine is causing the problem. First check the ENTRY
statement to make sure that the requirement is what you had in mind; if so, the caller may
need work.

3.3.5 EliminateINVARIANT and EXIT errors

These refer to the state at the end of a routine.

3.3.6 Work on loop invariants

This is the really hard job in verification. Fortunately, when one is only trying to prove
absence of fatal run-time errors, it is not too tough.A few simple cases cover most
situations, of which the following is typical.

WHILE parens > 0 DO BEGIN
printchar(’)’);
parens := parens - 1;
STATE(DEFINED(parens));
END;

The invariant can go anywhere in the loop but usually placing it at the end of the loop is
more convenient, as in the example below.



FOR i := 1 TO 100 DO BEGIN
tab[i] := 0;
STATE(DEFINED(tab,1,i));
END;

When initializing an array of records, it is usually desirable to write a procedure which
initializes one record in the array through avar argument, and use that procedure in the
initialization loop. The record initializing procedure should have as its exit condition that
the entirevar argument is DEFINED.

3.3.7 Findall hard-to-pr ove assertions

Examine the remaining error messages. Look at each one and ask yourself ‘‘can you
convince yourself informally that the assertion is true for that path at that point, purely by
tracing backward along the indicated path and looking at the statements there?’’. If not,
the program or the assertions need work. If so, defer working on that assertion until all
the assertions that need work have been dealt with. Once all the easy assertions are out of
the way, it is time to deal with the hard ones.

The Verifier can prove, without assistance, assertions that are true because of properties
of addition, subtraction, multiplication by explicit constants, the relational operators, the
Boolean connectives, and storing into and referencing arrays and records. This takes care
of about 90-95% of all verification conditions.Beyond this point, the Verifier needs help.

Help is provided by adding ASSERT statements to the program and by addingrules to
the rule database.Whenever an ASSERT statement is placed in a Pascal-F program, the
Verifier will try to prove that it holds.For any statement after the ASSERT statement in
the program, the assertion will be assumed true. Hard assertions should be preceded by
an easy assertion or assertions (ones that the Verifier can prove) which imply the hard
assertion by some formal argument the Verifier doesn’t yet know about. Thisargument
should be something that depends only on the ASSERT statement and the following hard
assertion. Itwill then be necessary to prove that argument as a rule.Proving rules is
done with the Rule Builder as a separate job; when working on the program, all the hard
assertions should be found and preceded with an easy assertion, until the entire
verification is a success except for the errors from hard assertion preceded by easy ones.
Then it is time to go to the Rule Builder, and probably to the resident Rule Builder expert.

An example is indicated.

FOR i := 1 TO 100 DO BEGIN
table1[i] := 0;
assert(table1[i] = 0);
assert(allzero(table1,1,i-1));
STATE(allzero(table1,1,i));
END;

In this example, the STATE assertion is hard to prove. But if we add the two ASSERT



statements, both of which the Verifier can prove without much trouble, we could certainly
argue that this makes it obvious that the STATE assertion is sound.If we had a rule that
said

a[i] = 0 and allzero(a,1,i-1)
implies

allzero(a,1,i)

the Verifier would apply the rule and prove the assertion. So we now know exactly what
rule we need, and can prove it with the Rule Builder.

3.3.8 Completingthe debugging

With this sequential approach to debugging a verification, the rather forbidding prospect
of eliminating all those error messages is somewhat less intimidating. Note, though, that
no sound statement can be made about the program untilevery error message has been
eliminated. Onefalse assertion can cause any number of other problems to be hidden.
As an example, writing

ENTRY false;

will eliminate all error messages for any routine, but will cause any caller of the routine
to fail. (It is an interesting property of the Verifier that unreachable code need not work!).
The same problem can be induced by accident; for example

ENTRY (x < 0) and (x > 100);

is essentially equivalent to the previous statement, since no number can satisfy both
constraints. Thus,until all error messages have been eliminated, the verification is
unsuccessful.

4. TheSyntax of Pascal-F

This chapter describes the syntax of Pascal-F, including the verification statements.Lines
marked with asterisks indicate productions altered to include the additional syntax
necessary for verification. Thesyntax here is a superset of that given in the Pascal-F
Language Reference Manual, and is given in the notation used in that manual.

4.1 Production Rules



<program> ::= <program heading> <outer block> .

<program heading> ::= PROGRAM <identifier> ;

<outer block> ::= <label declaration part>
<constant definition part>
<type definition part>
<value declaration part>
<variable declaration part>
<global routine declarations>
<statement part>

<label declaration part> ::=
<empty> | LABEL <label> {, <label>} ;

<entry declaration part> ::= <empty> | *
ENTRY <expression> {; <expression>} ; *

<exit declaration part> ::= <empty> | *
EXIT <expression> {; <expression>} ; *

<effect declaration part> ::= <empty> | *
EFFECT <expression> {; <expression>} ; *

<invariant declaration part> ::= <empty> | *
INVARIANT <expression> {; <expression>} ; *

<depth declaration part> ::= *
<empty> | DEPTH <expression> ; *

<constant definition part> ::= <empty> | CONST
<constant definition> {; <constant definition>} ;

<type definition part> ::= <empty> |
TYPE <type definition> {; <type definition>} ;

<variable declaration part> ::= <empty> |
VAR <variable declaration>
{; <variable declaration>} ;

<value declaration part> ::= <empty> |
VALUE <value declaration>
{; <value declaration> } ;

<global routine declarations> ::= { <global routine> ; }



<routine declaration part> ::= { <routine declaration> ;}

<statement part> ::= BEGIN <statement> {; <statement>}
{; <exception handler>} END

<global routine> ::= <monitor declaration> |
<routine declaration>

<routine declaration> ::= <module declaration> |
<function declaration> |
<procedure declaration>

<module declaration> ::=
<module heading> <block>

<module heading> ::=
MODULE <identifier>;
<export list> <import list>

<export list> ::= EXPORTS <identifier>{, <identifier>} ;
| <empty>

<import list> ::= IMPORTS <identifier>{, <identifier>} ;
| <empty>

<monitor declaration> ::=
<monitor heading> <block>

<monitor heading> ::= MONITOR <identifier> PRIORITY
<priority level> ; <export list> <import list>

<priority level> ::= <constant>

<procedure declaration> ::= <procedure heading> <block>

<procedure heading> ::= <possibly extra> PROCEDURE *
<identifier> <parameters> ; *

<function declaration> ::= <function heading> <block>

<function heading> ::= <possibly extra> FUNCTION <identifier> *
<parameters> : <result type> ; *

<parameters> ::= ( <formal parameter section>
{; <formal parameter section>} ) | <empty>



<formal parameter section> ::= <parameter group> |
VAR <parameter group>

<parameter group> ::= <identifier> {, <identifier>} : *
<possibly extra> <type identifier> *

<block> ::= <label declaration part>
<entry declaration part> *
<exit declaration part> *
<effect declaration part> *
<invariant declaration part> *
<depth declaration part> *
<constant definition part>
<type definition part>
<value declaration part>
<variable declaration part>
<routine declaration part>
<statement part>

<value declaration> ::= <identifier> =
<type identifier> ( <value list> )

<value list> ::= <value> { , <value> }

<value> ::= <constant> | ( <value list> )

<compound statement> ::= BEGIN <statement> {; <statement>} END

<statement> ::= <unlabeled statement> | *
<label> : <unlabeled statement> | *
PROOF <unlabeled statement> | *
<verification statement> *

<verification statement> ::= <assert statement> | *
<summary statement> *

<unlabeled statement> ::= <simple statement> |
<structured statement>

<simple statement> ::= <assignment statement> |
<procedure statement> |
<init statement> |
<send statement> |
<wait statement> |
<raise statement> |
<empty statement>



<structured statement> ::= <compound statement> |
<conditional statement> |
<repetitive statement> |
<with statement>

<exception handler> ::=
WHEN <exception spec> DO <statement>

<exception spec> ::= <exception name> {, <exception name>} |
OTHERS

<exception name> ::= <identifier>

<constant definition> ::= <identifier> = <constant>

<constant> ::= <unsigned constant> | <sign> <unsigned constant>

<type definition> ::= <identifier> = <type>

<type> ::= <simple type> | <structured type>

<simple type> ::= <ordinal type> |
<fixed point type> |
<signal type>

<ordinal type> ::= <enumerated type> |
<subrange type> |
<type identifier> |

<enumerated type> ::= ( <identifier> {, <identifier>} )

<subrange type> ::= <constant> .. <constant>

<type identifier> ::= <identifier>

<fixed point type> ::= FIXED <constant> .. <constant>
PRECISION <constant>

<signal type> ::= SIGNAL <hardware mapping>

<structured type> ::= <unpacked structured type> |
PA CKED <unpacked structured type> |
DEVICE <hardware mapping> <field list> END

<hardware mapping> ::= [ <address> ]| <empty>



<address> ::= <expression>

<unpacked structured type> ::= <array type> |
<record type> |
<set type>

<array type> ::= ARRAY [ <index type> {, <index type>} ] OF
<component type>

<index type> ::= <ordinal type>

<component type> ::= <type>

<record type> ::= RECORD <field list> END

<field list> ::= <fixed part> |
<fixed part> ; <variant part> |
<variant part>

<fixed part> ::= <record section> {, <record section>}

<record section> ::= <field identifier> {, <field identifier>} *
: <possibly extra> <type>| <empty> *

<variant part> ::= CASE <tag field> <possibly extra> *
<type identifier> OF <variant> {; <variant>} *

<tag field> ::= <identifier> : *

<variant> ::= <case label list> : ( <field list> ) | <empty>

<set type> ::= SET OF <base type>

<base type> ::= <simple type>

<variable declaration> ::= <identifier> {, <identifier>} : *
<possibly extra> <type> *

<possibly extra> ::= <empty> | EXTRA *

<result type> ::= <type identifier>

<assignment statement> ::= <variable> := <expression> |
<function identifier> := <expression>



<variable> ::= <entire variable> {<component part>}

<component part> ::= [ <expression> {, <expression>} ] |
. <field identifier>

<entire variable> ::= <variable identifier> | <field identifier>

<variable identifier> ::= <identifier>

<field identifier> ::= <identifier>

<expression> ::= <relation> *

<relation> ::= <simple expression> <relation part> *

<relation part> ::= <empty> | <relational operator> <relation> *

<relational operator> ::= = | <> | ’< | ’<= | >= | *
> | IN | IMPLIES *

<simple expression> ::= <unsigned simple expression> |
<sign> <unsigned simple expression>

<sign> ::= + | -

<unsigned simple expression> ::= <term> <addend>

<addend> ::= <empty> |
<adding operator> <unsigned simple expression>

<adding operator> ::= + | - | OR

<term> ::= <factor> <multiplier part>

<multiplier part> ::= <empty> | <multiplying operator> <term>

<multiplying operator> ::= * | / | DIV | MOD | AND

<factor> ::= <variable> | <unsigned constant> | ( <expression> ) |
<function designator> | <set> | NOT <factor>

<unsigned constant> ::= <unsigned number> | <string> |
<constant identifier>

<constant identifier> ::= <identifier>



<function designator> ::= <function identifier>
<actual parameter part>

<function identifier> ::= <identifier>

<set> ::= [ <element list> ]

<element list> ::= <element> {, <element>} | <empty>

<element> ::= <expression> <range part>

<range part> ::= <empty> | .. <expression>

<procedure statement> ::= <procedure identifier>
<actual parameter part>

<procedure identifier> ::= <identifier>

<actual parameter part> ::= <empty> |( <actual parameter>
{, <actual parameter>} )

<actual parameter> ::= <expression>

<label> ::= <constant>

<empty statement> ::= <empty>

<conditional statement> ::= <if statement> | <case statement>

<if statement> ::= IF <expression> THEN <statement> <else part>

<else part> ::= <empty> | ELSE <statement>

<case statement> ::= CASE <expression> OF <case list element>
{; <case list element>} END

<case list element> ::= <case label list> : <statement> |
<empty>

<case label list> ::= <case label> {, <case label> }

<case label> ::= <constant>

<repetitive statement> ::= <while statement> |
<repeat statement> |
<for statement>



<while statement> ::= WHILE <expression> DO <loop body> *

<repeat statement> ::= REPEAT <loop body> *
UNTIL <expression>

<for statement> ::= FOR <control variable> := <for list> DO
<loop body> *

<for list> ::= <initial value> <direction> <final value>

<direction> ::= TO | DOWNTO

<control variable> ::= <identifier>

<initial value> ::= <expression>

<final value> ::= <expression>

<loop body> ::= BEGIN {<statement> ;} <state statement> *
<optional measure statement> {; <statement>} END *

<optional measure statement> ::= ; <measure statement> | <empty> *

<with statement> ::= WITH <record variable list> DO <statement>

<record variable list> ::= <record variable> {, <record variable>}

<record variable> ::= <identifier>

<init statement> ::= INIT <monitor identifier>

<monitor identifier> ::= <identifier>

<raise statement> ::= RAISE <exception name>

<send statement> ::= SEND <signal name>

<wait statement> ::= WAIT <signal name>

<assert statement> ::= ASSERT ( <expression> {, <expression>} ) *

<summary statement> ::= SUMMARY ( <expression> {, <expression>} ) *

<state statement> ::= STATE ( <expression> {, <expression>} ) *

<measure statement> ::= MEASURE ( <expression> ) *



<signal name> ::= <identifier>

5. Examples

The examples in this chapter are designed to aid the user in learning to use the Verifier.
For the first example, a square root calculation, verification conditions have been
generated by hand and informal proofs given. Thisexample is intended to give the user
some insight into how the Verifier examines programs.

The second example, a set of routines for managing a circular buffer, shows the use of the
verifier to verify only absence of run-time errors, and the maintenance of a simple
invariant. It is useful to note how few assertions were required. This example has been
passed by the Verifier in the form shown.

The third example, a very simple-minded engine control program, is intended to illustrate
the use of assertions and proof variables in constructing a verifiable Pascal-F program.It
also illustrates means of programming within the restrictions required for a reliable and
verifiable multi-process program. This example also has been passed by the Verifier.

5.1 Asimple example worked by hand

In this example the reader is taken ‘behind the scenes’, so to speak, to see how program
verification can be performed manually. The function shown here is a fixed point square
root routine. In addition to the normal proof of runtime-error-free operation, a full proof
of correctness is attempted, which is to say that we actually try to prove that the function
computes square root to within some explicit error bound. This example is rather more
complex mathematically than most parts of control programs, and as will be seen the
verification conditions generated are sometimes difficult mathematically, especially when
one bears in mind that the rules of fixed-point arithmetic are being interpreted strictly.



Figure 1. Function before addition of verification statements

(*
Square root by bisection

This technique has the useful property that it
it will work for any monotonic function.

*)
FUNCTION sqrt(s: FIXED 2.0 .. 100.0 PRECISION 0.1):

FIXED 1.0 .. 10.0 PRECISION 0.1;
VAR

x, lowbound, highbound: FIXED 1.0 .. 100.0 PRECISION 0.1;
BEGIN

x := s ; ( * s et initial try *)
lowbound := 1.0; (* lowest possible square root *)
highbound := x; (* highest possible *)

(* stop when interval tiny *)
WHILE highbound - lowbound > 0.1 DO
BEGIN (* choose new trial value *)

x := ( highbound + lowbound) / 2;
IF x*x > s THEN BEGIN (* if x is too big *)

highbound := x; (* then answer must be below x *)
END ELSE BEGIN (* if x is too small *)

lowbound := x; (* then answer must be above x *)
END;

END;
sqrt := x; (* return answer *)

END; (* of sqrt *)

The first step in documenting the function for verification is to define what the procedure
is supposed to do. This is simple in this case, because square root is easy to define.An
exit assertion of the form

EXIT abs(x * x - s) < 0.2;

describes the desired result.

The next step is to figure out how to prove that the function will produce the desired
result. We can prove this by noting the following facts about the situation that exists
when the loop exits.

• x is between lowbound and highbound

• s is between lowbound squared and highbound squared

• lowbound is less than or equal to highbound



• lowbound is within 0.1 of highbound

All these conditions except the last hold for every iteration of the loop, and thus form part
of the loop invariant. Theseinsights must be provided to the verifier in a STATE
statement.

Proving that the loop terminates requires that we find some measure that decreases as the
loop iterates. Since the algorithm operates by closing the interval between highbound
and lowbound, the difference between these two is a suitable value to appear in the
MEASURE statement.



Figure 2. Function after addition of verification statements

(*
Square root by bisection

This technique has the useful property that it
it will work for any monotonic function.

*)
FUNCTION sqrt(s: FIXED 2.0 .. 100.0 PRECISION 0.1):

FIXED 1.0 .. 10.0 PRECISION 0.1;
EXIT abs(sqrt*sqrt - s) <= 0.2; (* definition of result *)

VAR
x, lowbound, highbound: FIXED 1.0 .. 100.0 PRECISION 0.1;

BEGIN
x := s ; ( * s et initial try *)
lowbound := 1.0; (* lowest possible square root *)
highbound := x; (* highest possible *)

(* stop when interval tiny *)
WHILE highbound - lowbound > 0.1 DO
BEGIN

MEASURE highbound - lowbound;
STATE lowbound*lowbound <= s,

highbound*highbound >= s,
highbound >= lowbound,
x <= h ighbound,
x >= l owbound;

(* choose new trial value *)
x := ( highbound + lowbound) / 2;
IF x*x > s THEN BEGIN (* if x is too big *)

highbound := x; (* then answer must be below x *)
END ELSE BEGIN (* if x is too small *)

lowbound := x; (* then answer must be above x *)
END;

END;
sqrt := x; (* return answer *)

END; (* of sqrt *)

We can now attempt actual verification. Thefirst step in verification is to trace out all
possible paths of control flow. Paths begin and end at the boundaries of procedures and at
STATE statements. Thereare thus six paths in this function.

1. Thepath starting at the beginning of the function, treating the WHILE condition
as true, and ending at the STATE statement.



2. Thepath starting at the beginning of the function, treating the WHILE condition
as false, and ending at the end of the procedure.

3. Thepath starting at the STATE statement, treating the IF condition as true, going
around the loop, treating the WHILE condition as true, and ending at the STATE
statement.

4. Thepath starting at the STATE statement, treating the IF condition as false, going
around the loop, treating the WHILE condition as true, and ending at the STATE
statement.

5. Thepath starting at the STATE statement, treating the IF condition as true, going
around the loop, treating the WHILE condition as false, and ending at the end of
the procedure.

6. Thepath starting at the STATE statement, treating the IF condition as false, going
around the loop, treating the WHILE condition as false, and ending at the end of
the procedure.

After working out the control flow in the program, the next step is to locate all the
assertions which must be verified for the path and generate a verification condition for
each. Assertionscome not only from the user’s EXIT and STATE statements but from
internal requirements needed to prevent run-time errors.

For the first path, it is necessary to verify all the following conditions.

1. A range error does not occur at ‘x := s’. (No problem, the type of x has less
restrictive bounds than that of s.)

2. A range error does not occur at ‘lowbound := 1.0’. (No problem, the constant
value is in the correct range.)

3. A range error does not occur at ‘highbound := x’.(No problem, the types match.)

4. Thevalue in the MEASURE statement is non-negative. (Since lowbound is 1.0,
and highbound is constrained by its type to be 2.0 or greater, this requirement is
met.) Notethat we are only concerned with the first time through the loop on this
path.

5. TheSTATE assertion ‘lowbound * lowbound <= s’ holds. (Since 1.0 * 1.0 <= 2.0,
this holds.)

6. TheSTATE assertion ‘highbound * highbound >= s’ holds. (Since on this path
highbound = x, we need only prove that x > 2.0 IMPLIES x*x > x.)

7. TheSTATE assertion ‘highbound >= lowbound’ holds.(We know that highbound
is not less than than 2.0 and that lowbound is 1.0, so this is no problem.)

8. The STATE assertion ‘x <= highbound’ holds. (x is equal to highbound; no
problem.)

9. TheSTATE assertion ‘x >= lowbound’ holds.(We know that lowbound is 1.0,
and that x is 2.0 or greater, so this is no problem.)

Proceeding on to path two, the path on which the WHILE statement body is never



executed, we find an interesting phenomenon. The loop is entered under the following
conditions:

lowbound = 1.0
highbound >= 2.0

For path two to be executed, the condition for exiting the loop,

NOT(highbound - lowbound > 0.1)

would have to be true at initial entrance to the loop. Since these three conditions cannot
all be true simultaneously, this path is never executed, and the loop body is always
executed at least once when the function is called. All verification conditions for this
path are true since the requirement for entry is false. Notethat there is no dead code;
there merely is no case where a specific set of decisions are taken when passing through
several conditional statements.It is not unusual for this to happen and this presents no
problems.

We now reach the first of the two interesting paths, the one around the loop taking the
true branch at the IF statement. This path starts and ends at the STATE statement.

The STATE statement defines the loop invariant. We hav ealready proved (for path one)
that the loop invariant is true at entry to the loop.We must now prove that if the loop
invariant is true for a given iteration of the loop, it will still be true at the end of that
iteration. Byproving this, we prove by induction that the loop invariant is true for every
iteration of the loop.

This path is complex enough that each verification condition is written out formally as a
proposition to be proven.

1. Thefirst verification condition is produced by trying to prove that the invariant
condition

lowbound * lowbound <= x

holds. Theverification condition generated is



lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound > 0.1

IMPLIES
lowbound * lowbound <= s;

This simplifies to

lowbound * lowbound <= s
IMPLIES

lowbound * lowbound <= s;

which is obviously true.This is a trivial case, because lowbound did not change
on this path.

2.

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound > 0.1

IMPLIES
highboundNEW*highboundNEW >= s;

which simplifies to

xNEW * xNEW > s
IMPLIES

xNEW * xNEW >= s



which is true.

3.

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound > 0.1

IMPLIES
highboundNEW >= lowbound;

which simplifies to

lowbound >= 1.0
AND highbound >= 1.0
AND highbound >= lowbound

IMPLIES
(highbound + lowbound) / 2 >= lowbound

which is true.

4.

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound > 0.1

IMPLIES
xNEW <= highboundNEW;

which transitivity of equality shows to be true.



5. Thepossibility that overflow might occur in the statement

x := ( highbound + lowbound) / 2;

must be considered. The verification condition

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound

IMPLIES
(highbound + lowbound) / 2 >= 1.0

AND (highbound + lowbound) / 2 <= 100.0

describes this, and this can be shown to always hold based solely on the
restrictions on lowbound and highbound.

6. It is necessary to prove that the loop terminates. This is done by showing that the
value in the MEASURE statement decreases with each loop iteration but never
becomes negative.

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound > 0.1

IMPLIES
(highboundNEW - lowbound) < (highbound - lowbound)

AND (highboundNEW - lowbound >= 0);

This immediately reduces to



lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND highbound >= lowbound
AND ((highbound + lowbound) / 2) - lowbound > 0.1

IMPLIES
AND (highbound + lowbound) / 2 < highbound;

(highbound + lowbound) / 2 >= lowbound;

which is true.

The next path to be considered is the same as the one above, except that the IF branch
takes the ‘false’ path.We will spare the reader the details of this path, which are similar
to those shown above.

The last two paths start at the STATE statement and go to the top of the loop, but exit at
the WHILE statement rather than continuing in the loop, finally ending at the EXIT
assertion. Letus first consider the path through the ‘true’ branch.

1. Thereplacement

sqrt := x; (* return answer *)

implies a restriction on x that x is less than or equal to 10.0, because the type of
the function ‘sqrt’ is FIXED 1.0 .. 10.0, while the type of ‘x’ is FIXED 1.0 ..
100.0, leading to the verification condition

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound <= 0.1

IMPLIES
xNEW <= 10.0;

Performing obvious simplifications, we obtain



lowbound <= 100.0
AND highbound <= 100.0
AND lowbound * lowbound <= 100.0
AND highbound * highbound >= 2.0
AND highbound >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW - lowbound <= 0.1

IMPLIES
xNEW <= 10.0;

which we fail to prove.

Let us see why. A counterexample to the above verification condition is

lowbound = 10.0
highbound = 10.2
xNEW = 10.1

which would cause overflow. There are two possibilities to be considered; either
the Verifier does not have enough correct information to constrain the value more,
because of an ill-chosen STATE assertion, or the program contains a bug.

In this case, the program indeed contains a bug; an attempt to take the square root
of 100.0 will compute a value of 10.1, which is within the desired error tolerance
for the square root routine but not within the range of approved values for the
function. Thisis a good example of the sort of bug the Verifier is good at finding
but which might be overlooked without verification.

2. Continuingonward, our last verification condition for this path is that the square
root function gets the right answer, or

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound <= 0.1

IMPLIES
abs(xNEW * xNEW - s) <= 0.2;

Opening up the definition of ‘abs’ gives us



lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND x <= highbound
AND x >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND highboundNEW = xNEW
AND highboundNEW - lowbound <= 0.1

IMPLIES
((xNEW * xNEW > s) AND (xNEW * xNEW - s) < 0.2))

OR ((xNEW * xNEW < s) AND (s - xNEW * xNEW) < 0.2));

which simplifies to

lowbound >= 1.0 AND lowbound <= 100.0
AND highbound >= 1.0 AND highbound <= 100.0
AND s >= 2.0 AND s <= 100.0
AND lowbound * lowbound <= s
AND highbound * highbound >= s
AND highbound >= lowbound
AND xNEW = (highbound + lowbound) / 2
AND xNEW * xNEW > s
AND xNEW - lowbound <= 0.1

IMPLIES
xNEW * xNEW - s < 0.2;

which if augmented by the previously proved information that xNEW is greater
than or equal to lowbound, can, with some difficulty, proved true.

This completes the analysis of the example. Oneclear bug was found, as mentioned
above; an attempt to compute the square root of 100 will result in an out-of-range result.
This sort of boundary condition bug is common, and is one of the things which the
Verifier is good at finding.

5.2 Circular buffering routines

This simple example shows a common program component; a set of circular buffering
routines. Herethe Verifier has been used to show absence of run-time errors and the
maintenance of a ‘‘sanity invariant’’ which if violated would indicate that the various
pointers were out of synchronism.

The main program here is a dummy one; the object here is to verify the subroutines.



program circle;
{

Circular Buffering Module Version 1.9 of 1/5/83
}
monitor circlebuf priority 5;
exports bufget, bufput;
const bufsize = 20;
type bufindex = 1..20; { position in buffer }

bufarray = array [bufindex] of char;
buffer = record { b uffer structure }

bufin: bufindex; { n ext position to insert }
bufout: bufindex; { n ext position to read }
bufcount: 0..bufsize; { c hars in buffer }
buf: bufarray; { t he buffer itself }
end;

var b: buffer; { t he buffer }
invariant defined(b); { t he buffer is always defined }

{ b uffer sanity }
((b.bufout + b.bufcount) = b.bufin)
or
((b.bufout + b.bufcount - bufsize) = b.bufin);

{
bufput -- put in buffer

}
function bufput(ch: char) { c har to insert }

: b oolean; { returns true if insert OK }
begin

if b.bufcount < bufsize then begin { if b uffer not full }
b.bufcount := b.bufcount + 1; { i ncrement buffer count }
b.buf[b.bufin] := ch; { s tore char in buffer }
assert(defined(b.buf,1,bufsize));{ array still defined }
if b.bufin = bufsize then { if at m ax }

b.bufin := 1 { r eset to start }
else b.bufin := b.bufin + 1; { o therwise increment }
bufput := true; { s uccess }

end else begin { if f ull }
bufput := false; { i nsert fails }
end;

end {bufput};



{
bufget -- get from buffer

}
function bufget(var ch: char) { c har returned }

: b oolean; { true if successful }
exit return implies defined(ch); { c har only if not empty }
begin

if b.bufcount > 0 then begin { if b uffer not empty }
b.bufcount := b.bufcount - 1; { d ecrement buffer count }
assert(defined(b)); { still all defined }
ch := b.buf[b.bufout]; { g et char from buffer }
if b.bufout = bufsize then { if at m ax }

b.bufout := 1 { r eset to start }
else b.bufout := b.bufout + 1; { o therwise increment }
bufget := true; { s uccess }

end else bufget := false; { f ails if empty }
end {bufget};

{
buffer initialization block

}
var i: bufindex;
begin

for i := 1 to 20 do begin { c lear to spaces }
b.buf[i] := ’ ’;
assert(defined(b.buf,1,i-1)); { still defined up to i-1 }
state(defined(i),

defined(b.buf,1,i));
end;

b.bufout := 1; { s tart at 1 }
b.bufin := 1; { e nd at 1 }
b.bufcount := 0; { l ength 0 }

end {circlebuf};
var stat: boolean; { s tatus from routines above }

ch: char; { w orking char }
begin {main}

init circlebuf;
stat := bufput(’x’);
stat := bufget(ch); { g et a char }
if stat then begin { if we g ot a char }

end;
end.



The Verifier can verify these routines in about four minutes. This verification does
require rules, but all the rules needed are in the Rule Builder’s standard database.

Verifying circle
No errors detected

Verifying circlebuf
No errors detected

Verifying circlebuf-bufget
No errors detected

Verifying circlebuf-bufput
No errors detected

5.3 Anexample in the form of an engine control program

The ‘‘engine control’’ program here is not related to any real engine or control
electronics. Itis an example of a way in which a real-time program might be written.
The program was written primarily to illustrate the kinds of things one might attempt to
prove about a program of this type.It also demonstrates that it is not overly difficult to
program under the restriction that monitors may not import or export variables. The
program was written two years before the Verifier was operational, and appeared in a
preliminary version of this manual.

This program has been verified by the Verifier. Quite a number of bugs were found in the
program during the process. Most of the work in getting the Verifier to accept the
program was in discovering the invariants needed for theexcluder module. Mostof the
bugs found were related to proper handling of failure of the clock or crankshaft interrupts.
Note that the invariants provided to check proper engine operation now hold even if the
crankshaft interrupt or clock interrupt never comes. For example, there is code to fire the
spark (belatedly) if the next crankshaft interrupt comes in before the spark has been fired
under normal timing rules. This code was required before the constraint of one-spark-
per-crank-pulse could be met.



program simpleengine; (* version 1.50 of 1/14/83
(*

sample engine control program

This is a sample program written to illustrate some features of
Pascal-F as extended for verification purposes. The program has a
rather simple-minded model of the engine, and controls only the
fuel pump and spark. The only inputs available to the program
are the clock, and the shaft position pulse.

This program does not interface with any existing engine hardware.

John Nagle
Ford Aerospace and
Communications Corporation
Western Development Labs

*)

const
maxticks = 1000; (* biggest time value *)
maxrpm = 8000; (* largest possible RPM *)
ms = 2; (* unit of time is 500 us *)
cylinders = 8; (* size of engine *)
maxsparkretard = 30; (* max retard angle *)
mustrecalc = 10; (* 10 rpm change forces recalc *)
stalllim = 200*ms; (* after 0.2 secs, stop fuel *)
interval = 2000; (* interval of spark table *)
tablemax = 15; (* max entry in table *)

(* retard at 1000 rpm int*)
type

rpm = 0 .. maxrpm; (* revolutions per minute *)
angle = 0..45; (* for shaft angles *)
ticks = 0..maxticks; (* for time measurement *)
delay = 0..stalllim; (* spark delay type *)
tableindex = 0..5; (* index to retard table *)
tableentry = 0..tablemax; (* entry in table *)
tabletype = array [tableindex] of tableentry; (* a retard table *)

(* spark retard table *)
(* i.e at 2000 rpm, 12 degree retard*)

value sparktable = tabletype(15,12,8,6,2,0);



(*
Rule function used in proofs concerning spark retard table

*)
rule function nonincreasing(a: tabletype; i,j: tableindex): boolean;

begin end;

(*
Monitor for interlocking - w ithin the monitor processing is
sequential.

There is no process associated with this monitor; it exists only
to protect the shared variables. The processes clockprocess and
shaftprocess use the procedures exported from this monitor.

*)
monitor excluder priority 2;
exports

doclocktick, (* called from clock monitor *)
doshaftpulse; (* called from crankshaft monitor *)

imports
nonincreasing,
rpm, angle, ticks,
tableindex, tableentry, tabletype, tablemax,
delay,
sparktable,
mustrecalc,
maxticks,
maxrpm,
interval,
stalllim,
excluder,
ms, cylinders, maxsparkretard;



(*
hardware interfaces

*)
type engineinterface = device

fuelpumpswitch: boolean; (* fuel pump on-off *)
firespark: boolean; (* store into here to fire *)
end;

(* max spark delay *)
const minrps = 1; (* minimum revs/second *)

(* largest time per rev *)
maxtimeperrev = (ms * 1000) div minrps;

(* worst-case spark delay *)
maxsparkdelay = stalllim; (* worst-case spark delay *)

var
(*

monitor global variables
*)

engine: engineinterface[01000]; (* engine hardware i/o *)

sparkdelay: 0..maxsparkdelay; (* between pulse and spark*)
(* angle: pulse to spark *)

enginespeed: rpm; (* actual engine speed *)
fuelpumpon: boolean; (* last orders to fuel pump *)
ticksuntilspark: 0..maxsparkdelay; (* ticks until next spark needed *)
tickssinceshaft: ticks; (* ticks since crankshaft pulse *)
oldenginespeed: rpm; (* speed at last spark recalc *)

(*
global proof variables

these have no existence in the operational program
and can be used only in verification statements.

*)
cylssincespark: extra integer;
tickssincespark: extra integer;



invariant
(*

The follogin invariants are invariants of the excluder
module. These invariants must be true whenever control
is not in the excluder module.

*)

(*
The following invariants describe real-world constraints to
be proved about the program.

*)
(* if fuel pump is on, spark must occur soon*)

fuelpumpon implies (tickssincespark < (1000*ms));

(* fuel pump must be disabled if the
engine is not rotating *)

(enginespeed < rpm(1)) implies (not fuelpumpon);

(* a spark must be issued for each cylinder pulse *)
cylssincespark <= 1;



(*
The following invariants are needed to help the proof process.
They must be proven; they are not accepted as given.

*)
(* either we have a spark scheduled or

we haven’t seen a cylinder pulse
since the last spark

*)
((cylssincespark > 0)

and (ticksuntilspark > 0))
or ((cylssincespark = 0)

and (ticksuntilspark = 0));
(* the invariants below were introduced

during the task of making the program
verifiable *)

(* if engine is running,
spark delay must be set *)

(enginespeed > 0) implies (sparkdelay > 0);
(* also true for last time around *)

(oldenginespeed > 0) implies (sparkdelay > 0);
(* consistency of timers *)

(cylssincespark = 0) implies (tickssinceshaft >= tickssincespark);
(* upper bound on tickssincespark *)

(enginespeed > 0) implies
((tickssinceshaft + 2*stalllim) >= tickssincespark);

(* consistency of tickssincespark *)
(enginespeed > 0) implies

((tickssincespark + ticksuntilspark) <= 2*stalllim);
(* if timeout, stalled *)

(tickssinceshaft > stalllim) implies (enginespeed = 0);
(* fuel pump locked to engine speed *)

(enginespeed > 0) = fuelpumpon;
(* old speed reset after stall *)

(oldenginespeed = 0) = ( enginespeed = 0);
(* definedness conditions *)

defined(enginespeed);
defined(ticksuntilspark);
defined(tickssinceshaft);
defined(fuelpumpon);
defined(cylssincespark);
defined(tickssincespark);
defined(oldenginespeed);
defined(sparkdelay);
defined(excluder);



(*
spark -- fire spark and update counters

*)
procedure spark;

exit tickssincespark = 0;
cylssincespark = 0;

begin
engine.firespark := true; (* fire spark *)
proof tickssincespark := 0; (* update proof variables *)
proof cylssincespark := 0;

end (* spark *);

(*
fuelpumpset -- check engine speed and set fuel pump

*)
procedure fuelpumpset;
exit fuelpumpon = (enginespeed.old > 0); (* on iff engine running *)
begin

fuelpumpon := enginespeed > 0; (* turn on iff engine running *)
engine.fuelpumpswitch := fuelpumpon;(* DEVICE I/O *)

end (* fuelpumpset *);



(*
doclocktick -- called from clock monitor on every tick

this procedure issues the spark command when required, and
turns the fuel pump on and off based on engine rpm.

*)
procedure doclocktick;
begin

proof if tickssincespark < maxticks then (* count time for
spark proof *)

tickssincespark := tickssincespark + 1;

if tickssinceshaft < maxticks then (* avoid timer overflow *)
tickssinceshaft := (* used to compute inverse of rpm *)
tickssinceshaft + 1;

if tickssinceshaft >= stalllim then (* check for stalled engine *)
begin

enginespeed := 0; (* engine is not rotating *)
oldenginespeed := 0; (* forget past history *)

proof cylssincespark := 0; (* forget about spark history *)
proof tickssincespark := 0; (* forget about spark history *)
tickssinceshaft := 0; (* forget about crank history *)
ticksuntilspark := 0; (* unschedule spark *)
end;

(* spark timing *)
if ticksuntilspark > 0 then (* if spark scheduled *)
begin (* count down time until spark *)

ticksuntilspark := ticksuntilspark - 1;
if ticksuntilspark = 0 then spark; (* fire spark if time *)

end;
fuelpumpset; (* decide fuel pump on/off *)

end; (* doclocktick *)



(*
recalcretard -- recalculate the spark offset

This is called only when engine RPM changes by a significant amount.
The calculation is by linear interpolation from a table.

*)
procedure recalcretard;
exit (enginespeed.old > 0) implies (sparkdelay > 0);

oldenginespeed = enginespeed.old;
(* retard at 1000 rpm int*)

type tdiff = 0..tablemax; (* table difference *)
var

low, high: tableentry; (* value in table *)
diff: tdiff; (* difference between neighbors *)
offset: 0..interval; (* offset from start of entry *)
i: tableindex; (* which entry *)

const tickspersec = 1000*ms; (* ticks per second *)
(* really need fixed-point here *)

k = ( tickspersec div 360) * 60; (* convert degrees to rpm-ticks *)
var sparkretard: angle; (* calculated spark retardation *)

delaywork: 0..45*k; (* largest possible value *)
begin

(* force case analysis for table *)
assert(nonincreasing(sparktable,0,0)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,1)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,2)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,3)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,4)); (* table is monotonic *)
assert(nonincreasing(sparktable,0,5)); (* table is monotonic *)

i := t ableindex(enginespeed div interval); (* calc table index *)
assert(sparktable[i] >= sparktable[i+1]); (* goal for rule *)
offset := enginespeed mod interval; (* offset from last entry *)
low := sparktable[i]; (* table entry from low side *)
high := sparktable[i+1]; (* table entry from high side *)
assert(high <= low); (* this is a decreasing table *)
diff := tdiff(low - high); (* difference in this interval *)

(* linear interpolation *)
sparkretard := angle(high + (diff * offset) div interval);
assert(sparkretard <= maxsparkretard); (* not too much *)

(* compute delay until spark *)
sparkdelay := 0; (* assume 0 (no spark) *)
if enginespeed > 0 then begin (* if engine turning *)

(* compute spark delay *)
delaywork := ((k*sparkretard) div enginespeed) + 1;



(* avoid oversize delay
at low rpm *)

if delaywork <= (stalllim div 2) then sparkdelay := delay(delaywork)
else sparkdelay := delay(stalllim);

end;
oldenginespeed := enginespeed; (* save speed at last calc *)

end; (* recalcretard *)



(*
doshaftpulse -- handle crankshaft pulse

*)
procedure doshaftpulse;
var speedchange: integer; (* local for calculation *)

rpmwork: 0..20000; (* working RPM *)
begin

if ticksuntilspark > 0 then begin (* if spark still in future *)
(* TROUBLE: clock may have failed *)

spark; (* force spark now, poorly timed *)
end;

assert(cylssincespark = 0); (* must not miss spark *)
proof cylssincespark (* we try to prove this never reaches 2 *)

:= cylssincespark + 1;
(* engine speed computation *)

if (tickssinceshaft > 0) then begin
(* compute new rpm *)

rpmwork := 1 + (60*ms*(1000 div cylinders)) div
tickssinceshaft;

assert(rpmwork > 0); (* must be running if cyl pulse *)
if rpmwork > maxrpm then (* limit measured engine speed *)

enginespeed := maxrpm
else enginespeed := rpm(rpmwork);
tickssinceshaft := 0; (* clear shaft timer *)

end else begin (* TROUBLE: probable clock fail *)
enginespeed := rpm(1); (* assume minimum RPM *)
end;

(* recalc spark if speed chg*)
if oldenginespeed = 0 then begin (* engine just started *)

ticksuntilspark := 0; (* clear all timers and counters *)
tickssinceshaft := 0;
proof tickssincespark := 0;
recalcretard; (* recalc spark retardation *)

end else begin (* engine did not just start *)
speedchange := enginespeed - oldenginespeed; (* calc speed change *)

(* take abs value *)
if speedchange < 0 then speedchange := - speedchange;
if (speedchange > mustrecalc) then (* if big change *)

recalcretard; (* go recalculate spark *)
end; (* end time to recalculate *)

ticksuntilspark := sparkdelay; (* schedule next spark *)
fuelpumpset; (* turn fuel pump on *)

end (* doshaftpulse *);



begin
(*

initialization
*)

enginespeed := 0; (* start with engine stopped *)
ticksuntilspark := 0;
tickssinceshaft := 0;
sparkdelay := 0;
fuelpumpon := false;
proof cylssincespark := 0;
proof tickssincespark := 0;
oldenginespeed := 0; (* original speed is zero *)

end; (* excluder *)

(*
shaft signal process - once per cylinder time

*)
monitor shaftprocess priority 2;
imports excluder, rpm, doshaftpulse;
entry defined(excluder); (* must be defined at INIT *)
invariant defined(excluder); (* must stay defined *)

var
shaftpulse: signal[0002B];

(* crankshaft pulse interrupt *)
(*

shaft processing loop
*)
begin

while true do begin
wait(shaftpulse); (* wait for shaft pulse *)
doshaftpulse; (* handle shaft pulse *)
state(defined(excluder)); (* loop invariant *)

end; (* end forever loop *)
end; (* shaftprocess *)



(*
clock monitor

all the processing is done in the shaft monitor.
*)
monitor clockprocess priority 2;
imports excluder, doclocktick; (* from shaft *)
entry defined(excluder); (* must be defined at INIT *)
invariant defined(excluder); (* must stay defined *)
var hardwareclock: signal[0004B]; (* clock interrupt *)
begin

while true do
begin wait(hardwareclock); (* wait for clock interrupt *)

doclocktick; (* handle clock interrupt *)
state(defined(excluder)); (* loop invariant *)

end;
end; (* end of clock monitor *)

(*
main program

*)
begin

init excluder; (* initialize variables *)
init shaftprocess; (* start crankshaft process *)
init clockprocess; (* start clock process *)

end.

Verification of this program takes about one hour and seven minutes on a VAX 11/780,
without any previous history being available. Thisdoes not include the building of some
necessary rules about the functionnonincreasingwith the Rule Builder. are sufficient to
verify this program.



Verifying clockprocess
No errors detected

Verifying excluder
No errors detected

Verifying excluder-doclocktick
No errors detected

Verifying excluder-doshaftpulse
No errors detected

Verifying excluder-fuelpumpset
No errors detected

Verifying excluder-recalcretard
No errors detected

Verifying excluder-spark
No errors detected

Verifying shaftprocess
No errors detected

Verifying simpleengine
No errors detected

6. Rules

It is possible to prove quite complex things about programs with the Verifier. In order to
accomplish this, the user must definerule functionswhich represent the properties to be
proven and must prove rules about them using therule builder. We will illustrate this
with a simple example, going into considerable detail on how to go about doing such
things.

6.1 An introduction to rules

Consider the following simple program fragment.



type tabix = 1..100;
type tab = array [tabix] of integer;
var table1: tab;

i,j: tabix;
...
for i := 1 to 100 do begin

table1[i] := 0;
end;

...
assert(table1[j] = 0); { t able1[j] must be 0 }

Here we have cleared an array to zero, and somewhere further along in the program we
need to be sure that a specific element in the array is zero.To do this we will need some
way to express the concept that all the elements in the array are zero.Since there is no
built-in way in Pascal to talk about the values of all the elements in an array in a
collective sense, it is necessary to introduce a means for doing this.

In the is case we introduce arule functioncalledallzero. We define it in Pascal-F with
the declaration

rule function allzero(a: tab; i,j: tabix): boolean; begin end;

Here, the keyword rule identifies this as a rule function. Rule functions are used only for
verification purposes and are ignored by the compiler. Rule functions may not have
function bodies or entry and exit assertions; they hav e only a minimal declaration as
shown in the example.

Rule functions are useful only when some rules about them have been proven. We will
defineallzero informally as being true if the array elements ofa are all zero from element
i to elementj inclusive and false otherwise. Some useful rules forallzeroare

(j < i) implies allzero(a,i,j)

which says thatallzero is vacuously true if the the upper bound is less than the lower
bound;

(i = j) implies (allzero(a,i,j) = (a[i] = 0))

which tells us that if both bounds are the same, the value of allzero is equal to true if the
value at the bounds is true and false otherwise;

(allzero(a,i,j) and (a[j + 1] = 0)) implies allzero (a,i,j + 1)

which states that ifallzero is true fromi to j anda[j + 1] is equal to zero thenallzero is
true fromi to j + 1;

(allzero(a,i,j) and ((x < i) or (x > j)))
implies allzero (<a,x,v>,i,j),

(where the strange notation<a,x,v> means ‘‘the arraya with elementx replaced byv
which says that ifallzerowas true fromi to j, storing into an elementx outside the rangei



to j will not destroy theallzeroproperty; and finally

((allzero(a,i,j) and (x >= i) and (y <= j)) implies (a[i] = 0)

which allows us to use the information that allzero is true for a range of values to prove
that a specific value is zero.

For the time being, we will ignore where these rules came from and will concentrate on
what can be done with them. Going back to our program, it is clear that we are going to
want to prove

allzero(table1,1,100)

at the end of thefor loop. Thisimplies that a loop invariant, astate statement, will be
required to describe the situation which is true at each iteration of the loop.

One minor complication is that it is not obvious to the Verifier that storing intotable1[i]
does not change the fact thatallzero is true from1 to i-1. We are going to need a rule that
tells the Verifier that out-of-bounds stores don’t causeallzero to become false. Also,the
rule handler in the Verifier only uses one rule between any two statements. We thus will
have to put an assertion in the program that the previous STATE is still true after the
assignment statement.Sincei has increased by 1, this assertion will be thatallzero is true
from 1 to i-1. So now let us see the program with the addition of the required assertions.

type tabix = 1..100;
type tab = array [tabix] of integer;
rule function allzero(a: tab; i,j: tabix): boolean; begin end;
var table1: tab;

i,j: tabix;
...
for i := 1 to 100 do begin

table1[i] := 0;
assert(allzero(table1,1,i-1));
state(allzero(table1,1,i));
end;

assert(allzero(a,1,100));
...
assert(table1[j] = 0); { t able1[j] must be 0 }

Each time through the loop,allzero becomes true for one more element, andallzero is
then true from 1 up to the loop index.

Given the rules described, the verifier is able to prove all the assertions in the program
fragment automatically.

Typically, the user will be provided with a knowledge base containing a library of rules
which cover most common situations in programming, and will be able to proceed much
as shown above. In the next chapter, we will return to the example above and show in



detail how the rules for it are proven.

6.2 Rulesand the Verifier

6.2.1 How the Verifier applies rules

Rules are almost always of the form

A implies B

whereA is referred to as thehypothesisand B as the conclusion. The Verifier, when
trying to prove something such as

assert(allzero(a, i, j));

whereallzero is a rule function, will search the database for rules with conclusions of the
form

allzero(x,y,z)

and will then apply the rule bybindingeach free variable in the rule to the corresponding
expression in the form being proven. This process is calledinstantiating the rule,
because the general form of the rule has now been applied to a specific instance.The
Verifier will try every applicable rule in every legitimate way, but will not apply a rule to
a form introduced by a rule. In other words, the Verifier applies rules only one deep. It is
the user’s job to add assertions to the source program so that between any two assertions
the application of only one rule is required.How to do this was described in detail in
chapter 2.

6.2.2 How the rules get to the Verifier

Rules are created with the Rule Builder (described in the next chapter) and made
available to the Verifier with theputrules utility program. The Rule Builder creates a
knowledge basefile, which may be used for verifying several different programs.The
rules being used in a given verification must be placed in aruledatabasefile. Thereis
one such file for each program being verified, and this file resides in the directory of work
files used by the verifier for each program being verified. Thedirectory has the name

<programname>_d

where the program being verified has the name

<programname>.pf

This directory is created by the Verifier the first time an attempt is made to verify a given
program, and is never deleted by the Verifier. The ruledatabaseandhistory files, along
with all the scratch files used during verification, reside in this directory, which is
managed entirely by the Verifier. The user should not alter any file in the work file
directory at any time.



6.2.2.1 Theputrules utility

The putrules utility reads a knowledge base file and creates aruledatabasefile. It is
invoked with the call

putrules <knowledge base> <program>_d

whereprogram is the name of the program (not including the trailing.pf ) being verified.
Putrules can only be run after the verification of the program has been tried at least once
and the Verifier’s work directory<program>_d created by the Verifier. After any change
to the knowledge base, it is necessary to rerunputrules to make the changes in the
knowledge base available to the Verifier.

If the changes to the knowledge base included the alteration or deletion of any rule
function definition,putrules will print a message so stating and will clear the history of
successfully verified routines, so that a full reverification will be performed the next time
the Verifier is invoked. Thischeck is required to insure soundness.

6.2.3 Standardknowledge bases

Standard knowledge bases may be created.A knowledge base may contain information
useful for verifying more than one program.For example, the information aboutallzero
above would be useful in any program that cleared arrays to zero. One useful knowledge
base is the Rule Builder’s built-in knowledge base. This knowledge base is called
verifier and is usually sufficient (and necessary) for programs which contain no user-
provided rule functions but do contain instances of the 3-argument form ofDEFINED
for proving the definedness of parts of arrays.

Usually a copy of this knowledge base is maintained in a well-known place on each
system on which the Verifier is installed.But a copy of this knowledge base can be
obtained, if required, by invoking the Rule Builder and, without proving any new
theorems, using the Rule Builder command

(MAKE-LIB ’verifier)

which will create the knowledge base filesverifier.lib and verifier.lispin the current
directory.

7. Therule builder

In the previous chapter, the concept of verification usingrules was introduced. These
rules must be created by the user and proven with machine assistance.The rule builder is
a tool used with the Verifier proper to construct sound new rules and thus provide the
Verifier with more knowledge.

7.1 Introduction

Using the Rule Builder requires a substantially greater level of expertise in both formal
mathematics and verification than does using the Verifier proper.

The Rule Builder is a version of the Boyer-Moore theorem prover initialized with a
knowledge base compatible with the Verifier’s built-in knowledge. It is a difficult



program to use, and requires some training in formal logic to use successfully. Not all
users of the Verifier need be familiar with the Rule Builder, but users must have access to
someone with this expertise for assistance when a verification requires a new rule.

7.1.1 Required reading

Before attempting to use the rule builder, it is necessary to become familiar with three
documents. Thefirst of these is the bookA Computational Logic, by Robert S. Boyer
and J. Strother Moore, published in 1979 by Academic Press, New York, NY. This book
describes the theory upon which the prover is based. Chapters1, 2, and 3 should be
studied closely, and reading the entire text while trying out some of the examples is
advisable.

Some knowledge of the Franz Lisp implementation of Lisp is required. The reference
manual is provided with the Berkeley UNIX distribution, and is also available from
Franz, Inc. of Berkeley, California. However, anyone with a working knowledge of Lisp
will probably not require this manual.

Finally, the manualA Theorem Prover for Recursive Functions: A User’s Manual
published in 1979 as Report CSL-91 by SRI International of Menlo Park, CA., is useful.
This manual describes the mechanics of running the theorem prover. The key parts have
been extracted and appear in the next few pages, but the theorem prover user’s manual
goes into more detail and should be on hand.

The prover has changed somewhat since the 1979 manual.We will try to cover the
important differences in this manual.

7.2 An introduction to the Rule Builder

In A Computational Logic [BOYER79], Boyer and Moore describe a formal logic based
on recursive functions, and they present a large number of techniques for discovering
proofs in that theory. These techniques are implemented in their theorem prover. This
chapter of the verifier manual is an adapted version of Boyer and Moore’s theorem prover
manual.

7.2.1 Teaching the theorem prover

While using the rule builder the user will spend most of his time teaching the system
about the concepts he defines and their relationships to other defined concepts.The
system is taught by defining functions and suggesting lemmas for it to prove and
remember for future use.

The system uses axioms and previously proved lemmas in four distinct ways. Thesystem
does not decide automatically how to use a given theorem; whenever any new theorem is
introduced, the user must specify how the lemma is to be used by providing the system
with a list names drawn from the following keywords.*

* The inductionlemma type has been discontinued. It is now necessary to use manually-providedhints
to help the prover with difficult inductions.



rewrite lemmasare used to rewrite terms. Most lemmas are rewrite
lemmas.

elim lemmasare used to replace certain complex terms by single
variables.

generalize lemmasare used to guide the theorem prover when it looks
for stronger induction hypotheses.

Any lemma with an empty list of lemma types will never be used again by by the system.

The theorem prover is very sensitive to the syntactic form chosen by the user to represent
each new fact. For example, a rewrite lemma of the form

(implies (and p q) (equal r s))

is used to rewrite instances ofr to s provided that the system can first establishp and then
q. This is the most common form of lemma.Note the asymmetry between hypothesis
and conclusion, and between left and right hand sides of the conclusion. In fact, because
the system must limit the resources it is willing to spend establishingp andq, ev en the
order of the hypotheses is relevant to the system. Thus, the above rewrite lemma causes
different behavior than any of the following logically equivalent formulae:

(implies (and p q) (equal s r))

(implies (and p (not (equal r s))) (not q))

(implies (and q p) (equal r s))

To become an effective user of the system one must understand how the commands
influence the behavior of the system.It is possible to infer the meaning of the various
lemma types after enough hands-on experience with the system.(Boyer and Moore add
the comment here ‘‘It is also possible to infer the structure of a brick wall by battering it
down with your head’’.)

7.2.1.1 Events, Dependencies, and Commands

The insertion of a definition or lemma into the knowledge base is called anev ent. All
ev ents have names. Someev ents, such as definitions of new functions, are naturally
associated with a name (e.g., the name of the function defined); others, such as theorems,
are given names by the user. See the section on syntax below.

The basic theorem-prover commands are those that create new events: the definition of a
new function, and the proof and storage of a new theorem. Thecommands that create
new events aredcl, defn, prove-lemma,andmove-lemma.

Events are related to each other by logical dependencies.For example, the admission of a
certain formula as a theorem depends on all of the functions and lemmas used in the



proof of the theorem.Similarly, the admission of a new recursive function definition
depends not only upon all of the previously introduced concepts used in the definition,
but also upon the functions and lemmas used to prove that the proposed ‘‘definition’’
truly defines a function.

Thus, the theorem-prover’s knowledge base is actually a noncircular, directed graph of
ev ents. Thetheorem prover’s performance is largely determined by its knowledge base.
The Rule Builder is initialized with a knowledge base with definitions and lemmas which
define the basic objects of Pascal-F verifications, integers and arrays, and provide a
reasonable set of knowledge about arithmetic and array operations.The user will need to
add his own definitions and prove theorems about them. It is possible to dump the
system’s knowledge base to a ‘‘library file’’ to sav ethe system’s state from one session to
the next, and to provide information to the Verifier proper.

After proving several theorems, the user finds that one of his earliest defined concepts
was inconveniently or inappropriately defined, the user can undo that definition (using the
undo-name or undo-back-through commands) and lose only those results whose
meaning or logical validity may depend on that definition.

7.2.2 Error handling

If one tries to execute an inappropriate command (e.g., assign the same name to two
different events, or attempt to define a function in terms of unknown concepts) self-
explanatory error messages will be printed. The system checks for over 100 errors and
has an error handling mechanism designed to keep the theorem proving machine in a
consistent state.For example, when an new command is processed, all possible errors are
checked before the first change is made to the data base, since an abortion midway
through the update would leave the machine in an unacceptable state.

Error messages are grouped into three classes; WARNING, ERROR, and FAT AL ERROR
messages. Warnings arise when the system has detected something unusual but not
logically incorrect. For example, the system prints a WARNING message if the user
defines a function but do not refer to one of the formal parameters in the body of the
function. Afterprinting a WARNING message, the system continues normal execution.

ERROR messages result from true errors in the sense that the system cannot continue
until the error is repaired, but the error can be repaired by editing a formula or changing a
name. Whensuch an error occurs the system prints an explanatory error message and
then returns to the LISP command prompt level, discarding the failed command.

FATAL ERROR messages occur when system resources are exhausted or when internal
checks indicate the presence of inconsistency in the data base or bugs in the theorem
prover itself. It is usually not possible to proceed past a fatal error. When a FAT AL
ERROR is observed, it should be reported as described in the section on reporting verifier
problems.

Despite the precautions taken in the theorem prover, it is possible to get the system in an
illegal state by aborting a command while the data base is in the process of being
changed. Ctl-Cwill abort any command, but this is unsafe.However, the prover may
spend hours exploring dead ends when trying some proofs.It is thus necessary to abort



commands on some occasions. The following cautions apply:

• dcl, make-lib, move-lemma, note-lib, and undo-name should never be aborted
while running.

• dependent-events, events-since prove, ppe, and chronology may be aborted at
any time without harm.

• defn andprove-lemma can be aborted but there is a small risk of corrupting the
theorem prover’s database, if thedefn or prove-lemma had in fact succeeded and
the database was in the process of being updated.

Boyer and Moore recommend that the result of any proof where a command was aborted
be considered suspect.

7.2.3 Output

The theorem prover prints an English description of what it is doing as it proceeds.The
sample session, shown below, shows what this is like. Normally, the output goes to the
user’s terminal, but can be diverted.

7.2.4 Syntax

All formulas in Boyer-Moore logic are written in a LISP-like prefix notation. This
notation is fully described in chapter III ofA Computational Logic.

7.2.4.1 Functions

The functions usable in this notation are those defined in the section ‘‘The Built-In
Knowledge Base’’ and any new user-defined functions the user introduces with thedefn
and dcl commands. Functionshave a fixed number of arguments as specified in the
definition of the function.*

7.2.4.2 Variables

The variables used in this notation are free variable names and have no relationship to
names used in Pascal-F programs. Names of variables, and of new functions, may be
composed of the characters A-Z, a-z, 0-9, ‘‘.’’ , and ‘‘!’ ’. Uppercase letters are converted
to lower case letters.

7.2.4.3 Constants

The available constants are the integers, written in the usual way, and the explicit
constants shown below.

(true) Booleantrue.

t Alternate for (true).

(false) Booleanfalse.

f A lternate for (false).

* Some functions are by design N-ary, for example, and and or.



(undefined) Aspecific object which is not an array, an integer, or a
Boolean value. Itis used in building up the theory of arrays.

(empty.array) An array-valued object, all elements of which are equal to
(undefined).

Only t, f, and the integers are typically used by the user of the Rule Builder.

7.3 Themechanics of using the Rule Builder

7.3.1 Startingup the program

The instructions in this section apply to the UNIX version of the program.

The command

rulebuilder

invokes the Rule Builder. This is a version of the Boyer-Moore prover pre-initialized
with a knowledge base compatible with the Verifier. It takes about a minute to load the
program (which requires about 2 megabytes of memory.) Themessages

Pascal-F Rule Builder of 2-JAN-86 16:02:04
[load /usr/lib/verifier.lisp]
Standard Pascal-F knowledge base loaded.
->

indicate that the system is ready for commands.

If a previous session with the Rule Builder has been used to produce a knowledge base,
that knowledge base can be used as a starting point for a new Rule Builder session by
invoking the Rule Builder with the command

rulebuilder knowledgebase

where knowledgebaseis the name of a knowledge base created with themake-lib
command.

Commands are aborted with control-C, which is sometimes unsafe, as mentioned above.

7.3.2 CommandsSummary

The commands listed below are a subset of the full command list of the Boyer-Moore
theorem prover. The commands listed are normally sufficient for building rules for the
Verifier.



7.3.2.1 chronology

The word chronology , without parentheses, will display a list of the names in the current
knowledge base, in reverse chronological order. Thus, the last name listed will be the
name of the oldest event, which is usuallyground-zero. The chronology list covers
ev ents brought in throughnote-lib, so the events which make up a library may be
listed.

7.3.2.2 (dcl<name> <arglist>)

Dcl declaresnameto be an undefined function of N arguments, where N is the length of
arglist, which must be a list of distinct, but otherwise meaningless, variable names.
Functions created viadcl have no semantics in the Rule Builder, but may have semantics
in the Verifier. The theory of uninterpreted functions does apply to functions created by
dcl, which means only that iff is an uninterpreted function,

x = y
implies

f(x) = f(y)

7.3.2.3 (defn<name> <arglist> <body> [<hints>])

Defn defines a function namedname,with formal argument listarglist and bodybody.
The optional parameterhintsallows the user to assist the theorem prover in validating the
definition. Thearglist must be a list of distinct variable names, andbody must be an
expression in the theory. This expression must be constructed as described under the
section on syntax, and may use as variable names only the names present inarglist. Only
previously defined functions, and the the function being defined in the defn, may be used
in thebody.

For recursive definitions, the system insists that the recursion terminate and will not
accept the definition fully unless it can prove this. Thesystem will try to prove that some
measure ofarglist gets smaller in each recursive call to namewithin body.

When the system cannot prove that a recursive definition terminates, a WARNING
message appears stating that the definition is not well-founded. The definition is not,
however, rejected by the system.It should be. The user should immediately remove it
with anundo-namecommand.

The hint parameter todefn is seldom required.If the function being defined is
nonrecursive, it is nev er required. Ifthe function is recursive but recurses in such a way
that at least one of the arguments in the recursive call is clearly less than the value at
invocation, no hint should be required.For example, if the function recurses by
subtracting 1 from an argument until the value becomes zero, the theorem prover will be
able to satisfy itself of the soundness of the definition without difficulty. But if a function
recurses byaddingone to an argument until a limit is reached, a hint will be necessary.

Hints for defn are very similar to the Pascal-FMEASURE statement; the user must
supply an expression whose value becomes smaller with each recursion. Hints have the



form of a list of (<comparing-operator> <recursion measure>) terms. Inthe usual
case, where only one hint is required, thehint parameter has the form((<comparing-
operator> <recursion measure>)). Suitablecomparing-operatorsare lessp,and lex2*.
The recursion measure must be some expression which, when evaluated both at entry to
the recursive function and at entry to the recursive function one level deeper in the
recursion, becomes smaller with each recursion.Here, ‘‘smaller’’ is defined relative to
the comparing-operator chosen.

Note thatdefn definitions are actually small recursive programs. Itis possible to run
these programs on test data; see ther command.

7.3.2.4 (dependent-events <name>)

Dependent-eventstakes an event name (i.e. a function or lemma name) and returns the
ev ents which depend on it.If name is deleted withundo-name,all the dependents of
namewill be deleted.

Dependency is simply defined. If adefn g mentions a functionf, theng depends onf. If
the proof of lemmax used lemmay anddefn f, thenx depends onf andy.

7.3.2.5 (events-since <eventname>)

This returns a list of all the events stored since the named event. Thelist is based strictly
on time, not dependency.

7.3.2.6 (exit)

Exit causes an exit from the Rule Builder. Any new knowledge added since the last
make-lib is lost.

7.3.2.7 (lemmas<functions>)

This is a cross-referencing tool.A l ist of all lemmas which mention any function in
functionsis returned.

7.3.2.8 (make-lib <file>)

Make-lib makes a file namedfile.lib and a file namedfile.lisp which together contain the
entire current knowledge base. Invoking the Rule Builder with

rulebuilder <file>

will restore the state of the Rule Builder to that in effect when themake-lib was
executed.

Library files are of moderately large size, about 100 kilobytes, and contain not only the
ev ents but substantial amounts of internal information.

7.3.2.9 (move-lemma <name> <lemmatypes> <oldname>)

Themove-lemmacommand allows the user to change the ways in which a lemma can be
applied within the Rule Builder. It is used primarily to ‘‘hide’’ l emmas or definitions

* SeeA Computational Logicfor an explaination oflex2.



which although correct cause the Rule Builder to pursue dead ends.Usually, lemmatypes
is NIL, which causes thedefn or prove-lemma ev ent oldnameto be hidden. When a
prove-lemma ev ent is hidden, the lemma will not be used by the Rule Builder, and when
a defn event is hidden, that definition will not be opened up. Hiding adefn does not
prevent its evaluation with the r command.

7.3.2.10 (note-lib<file>.lib <file>.lisp)

Note-lib reads infile, which must have been produced bymake-lib, and reinitializes the
Rule Builder with the knowledge base in that file. This is a reinitialization, not an
addition; the state of the theorem prover is cleared before the read.

7.3.2.11 (ppe<eventname>)

Theppecommand prints the event eventnamein a tidy format.

7.3.2.12 (prove <thm>)

Prove attempts to prove the conjecturethm, using all the theorem-proving techniques at
the system’s disposal. prove prints an English-language description of the proof attempt
in real-time, so the user can monitor the progress of the attempt.The result of the proof
is not saved.

7.3.2.13 (prove-lemma <eventname> <lemmatypes> <thm> [<hints>])

This is the most important command in the Rule Builder. Prove-lemmaattempts to prove
a lemma as withprove, and if the attempt is successful, the lemma will be saved,
available for use in the ways specified in the listlemmatypes.The allowed lemma types
are rewrite, elim, and generalize.prove-lemmafirst checks to see if the syntactic form of
thm is acceptable for thelemmatypesindicated. If no error is diagnosed in this pre-
processing, a proof is attempted as with the prove command. Ifthe proof succeeds, the
lemma is stored under the nameeventnameand is usable with the lemma types
lemmatypes.

If eventnameends in ‘‘-rule’’ or ‘ ‘-RULE’’, and thelemmatypeslist includes ‘‘rewrite’’
then the event is considered a Verifier rule and, if placed in a Rule Builder library with
make-lib and then copied to a Verifier database file with the ‘‘putrules’’ utility , will be
used by the Verifier.

The optional parameterhintsallows the user to order the theorem prover to try a specific
lemma or induction at the beginning of the proof, thus affording some minimal control
over the proof process. Hints are not normally necessary; it is better when possible to
help the theorem prover along by proving lemmas which will then be used in later proofs.
However, hints can be provided if necessary. This is an advanced feature of the prover
and is not recommended for new users.

The hints arguement to theprove-lemma command, if not ommitted, must be a list of
hint entries.There are five kinds of hints:

use Indicatesthat a specific lemma is to be applied in a specific
way at the beginning of the proof. The form of ausehint is



(use (event1 (v1 t1) ... (vn tn))
...
(eventk (vk tk) ... (vm tm)))

where eacheventi is the name of anadd-axiom, prove-
lemma, or defn ev ent, eachvi is a variable name from the
definition of the event, and eachti is a term in the formula
being proven. The user is thus explicitly requesting the
application of a rule, and the user must give the exact bindings
of the variables in the rule to the terms in the formula being
proven.

A usehint is a request, not a demand; if the lemma indicated
in the hint cannot be applied to the formula being proven, the
hint will be ignored and the prover will proceed without it. It
is thus important when usingusehints to watch the beginning
of the proof for the application of the hint.

expand Indicatesthat adefn should be expanded at the beginning of
the proof.

disable Prevents the use of a named lemma or expansion of a named
definition in the proof.

induct Indicatesthe induction strategy that the prover is to use.

time We don’t know what this is for.

The useanddisablehint types are sufficient for most proofs. The prover has relatively
good diagnostics for incorrectly formed hints; a badly formed hint will produce a
message giving the correct form and an indication of why the prover is unhappy with the
hint.

7.3.2.14 (r<term>)

The r command evaluates term, which must be an expression constructed from valid
built-in functions, defn functions, and constants.For example,

(r (plus 2 2))

will return 4. More usefully, if we define a function of our own,



(defn FACTORIAL (N)
(if (lessp 0 N)

(times N (FACTORIAL (difference N 1)))
1))

we can then try test cases on it.

(r (FACTORIAL 4))

will return 24.

This evaluation process is quite fast. TheRule Builder generates Lisp code for eachdefn
when thedefn is created, so that definitions can be rapidly evaluated for constant values.
Recursive definitions generate recursive code. Sincethe Rule Builder insists that
definitions be provably well-founded, infinite recursion is prevented.

The Boyer-Moore theory is a constructive theory of total functions. This means that any
syntactically valid variable-free expression can be evaluated. For example, FACTORIAL
can be applied to T, the Boolean value true, and a consistent value will be returned.
When constructing definitions, the actions for inputs of unexpected types must be borne
in mind.

It is worthwhile to try out ther command on some of the built-in functions to develop a
feel for what they do. An interesting exercise is to produce an array-valued result.For
example,

(r (storea! (storea! (empty.array) 3 100) 5 200))

will produce an array-valued object with element 3 equal to 100 and element 5 equal to
200. Thisgives the user some insight into how arrays are represented internally.

7.3.2.15 (undo-back-through <eventname>)

Eventnameand all events performed sinceeventnamewill be undone. This includes
ev ents not dependent oneventname.

7.3.2.16 (undo-name<eventname>)

Eventnameand all events dependent upon it will be undone.

7.4 Thebuilt-in knowledge base

The Rule Builder, as stated before, is a version of the Boyer-Moore theorem prover pre-
initialized with a knowledge base compatible with the Verifier. This knowledge base
includes definitions of arithmetic for the natural numbers and the integers, Boolean and
comparison functions, and a definition of arrays.It also contains about a hundred lemmas
of general utility, most of which are statements about arithmetic.



7.4.1 Thebuilt-in functions

The predefined functions are as follows.

(add1 N) Adds one, usable on natural numbers only.

(and B1 B2 ...) N-argument and.

(difference N M) Natural number subtraction.

(equal X Y) Equality; usable on any type operands.

(if P X Y) If P then X else Y. if must not appear in rules, but may be
used indefn definitions or non-rule lemmas.

(implies P Q) Boolean implication.

(lessp N M) Natural number comparison.

(not P) Boolean negation.

(numberp N) True if value is a natural number.

(or B1 B2 ...) N-argument or.

(plus N M) Natural number addition.

(quotient N M) Natural number division.

(remainder N M) Natural number remainder.

(sub1 N) Subtracts one.

(times N M) Natural number multiplcation.

zero Equivalent to 0.

(zerop N) True if N is equal to 0.

(addi! I J) Integer addition.

(alltrue! r) True if all parts of the argument are true. This is a dcl to the
rule builder, and has no semantics in the rule builder. The
Verifier expandsalltrue! based on type information.

(arrayp! A) Array type predicate, true if the argument is an array.

(arraytrue! A I J) True if the elements from I to J of array A arealltrue!. When

defined(A,I,J)

is written in Pascal-F source,(arraytrue! A I J)applied to the
definedness part of A will be generated in the verification
condition. This allows inductive proofs of definedness of
arrays.

(booleanp! A) Type predicate, true if A is Boolean.



(divi! I J) Integer division.

(gei! I J) Integer >=.

(gti! I J) Integer >.

(integerp! I) Type predicate, true if I is an integer.

(lei! I J) Integer <=.

(lti! I J) Integer <.

(mod! I J) Integer remainder. Mod should be applied to positive
numbers only, because the Verifier has no knowledge about
what the result is for negative numbers. Thisreflects the
Pascal-F implementation.

(muli! I J) Integer multiply.

(negi! I) Integer negation.

(numberp! I) Type predicate, true if I is a natural number (nonnegative).

(selecta! A I) Array subscripting function; equivalent to the Pascal form
A[I].

(selectr! A F) Record selector, equivalent to the Pascal form ‘‘A .F’’. The
Rule Builder does not know about records because it lacks
type information. This is a dcl uninterpreted function.The
Verifier interpretsselectr! based on the type information from
the program.

(storea! A I V) Array store function. The result ofstorea! is an array equal
to A except that A[I] = V. This function has no Pascal infix-
form equivalent, but is displayed in the Verifier’s log of
verification conditions as ‘‘<A I V>’’.

(storer! A F V) Record store function.The result ofstorer! is a record equal
to A except that A.F = V. This function is displayed in
verification conditions as ‘‘<A I V>’’, and looks just like the
array store function in that form.The storer! function, like
selectr!,is a dcl.

(subi! I J) Integer subtraction.

The upper-case names are identical to those inA Computational Logic in both syntax and
meaning. We hav e not changed these because they are built into the Boyer-Moore
system. Norule function may be given the same name as one of the built-in names.The
names ending in ‘‘!’ ’ represent the additional functions needed to handle Pascal-F
verification conditions.

7.5 Anexample of rule building

In the chapter ‘‘Rules’’, we gav ea sample program fragment which used a rule function
calledallzero. Verification of this piece of a program required some rules. As a concrete
example, we make a simple program out of our program fragment.



1 program example6;
2 {
3 Program fragment to demonstrate rule usage
4 }
5 t ype tabix = 1..100;
6 t ype tab = array [tabix] of integer;
7 r ule function allzero(a: tab; i,j: tabix): boolean; begin end;
8 v ar table1: tab;
9 i ,j: tabix;

10 begin
11 for i := 1 to 1 00 do begin
12 table1[i] := 0;
13 assert(allzero(table1,1,i-1));
14 state(allzero(table1,1,i));
15 end;
16 assert(allzero(table1,1,100));
17 j := 25; { s ome arbitrary value }
18 assert(table1[j] = 0); { table1[j] must be 0 }
19 end.

We will make an attempt at verifying the program, knowing that the attempt will be
unsuccessful, since the Verifier has no idea whatallzero means.

% pasver example6.pf

Of course, we get diagnostic messages.



Pass 1:
Pass 2:
Pass 3:

Verifying example6
Could not prove {example6.pf:18} table1[(j - 1) + 1] = 0
(ASSERT assertion)
for path:

{example6.pf:11} Start of "example6"
{example6.pf:11} FOR loop exit

Could not prove {example6.pf:14} allzero(table1,1,i)
(STATE assertion)
for path:

{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop

Could not prove {example6.pf:14} allzero(table1,1,i)
(STATE assertion)
for path:

{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop

Could not prove {example6.pf:13} allzero(table1,1,i - 1)
(ASSERT assertion)
for path:

{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop

Could not prove {example6.pf:13} allzero(table1,1,i - 1)
(ASSERT assertion)
for path:

{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop

5 errors detected

We obviously need rules aboutallzero. In the previous chapters, we figured out what
rules we needed. So let us build them.

We begin by invoking the rule builder

% rulebuilder

which responds with its signon message and a prompt.



Pascal-F Rule Builder of Wed Feb 26 19:58:22 1986
[load /u/jbn/ver/cpc6/verifier.lisp]
Default Pascal-F knowledge base loaded.
->

In this session, we will define the functionallzero, which is a predicate for testing
whether an array is composed entirely of zero elements between two subscript bounds.
The definition is a recursive function; allzero is true vacuously if J is less than I,
otherwise we recurse, checking each element, until J is less than I.

-> (defn allzero
(a i j)
(if (lessp j i)

t
(and (allzero a (add1 i) j)

(equal (selecta! a i) 0))))

WARNING: The recursion in allzero is unjustified.

Warning: The admissibility of allzero has not been established.
We will assume that there exists a function satisfying this
definition. An induction principle for this function has also
been assumed, corresponding to the obvious subgoal induction
for the function. These assumptions may render the theory
inconsistent.

Note that (or (falsep (allzero a i j)) (truep (allzero a i j)))
is a theorem.

************** F A I L E D **************

[14.183333 0.4166669999999992 ]
nil

This is no good.We must not accept this definition or our theory might be unsound.
Although the prover has (grudgingly) stored the definition, we want to delete it and try
again. Sowe use theundo-back-through command to delete the definition ofallzero.



-> (undo-back-through ’allzero)
(defn allzero (a i j) (if (lessp j i) t (and (allzero a
(add1 i) j) (equal (selecta! a i) 0))))

Actually, there is nothing wrong with our definition ofallzero. It is just that the theorem
prover isn’t smart enough to figure out that the recursion terminates. There are two ways
to deal with this problem; one is to rewrite the definition so that the theorem prover can
figure this out by itself, and the other is to provide a hint. The first approach could be
applied by rewriting allzero so that it recursed by subtracting 1 fromj on each iteration
rather than adding 1 toi. The theorem prover has no trouble understanding that
subtracting 1 repeatedly with a test forlesspin the right place must lead to termination.

But for purposes of illustration we’re going to bull our way through with a hint.As
mentioned in the Command Summary section fordefn, a hint for adefn is a lot like the
Pascal-FMEASURE statement. We need an expression which gets smaller with each
recursion. Theexpression(difference (add1 j) i)will do the job. We need theadd1
becausedifference returns a natural number; a negative value is not possible.We thus
must bias the value ofj to avoid trouble for the case wherej is one less thani.

Our hint will have the form

(lessp (difference (add1 j) i))

indicating that we want (difference (add1 j) i)used as the recursion measure andlessp,as
usual, used as the well-founded relation.



-> (defn allzero
(a i j)
(if (lessp j i) t

(and (allzero a (add1 i) j)
(equal (selecta! a i) 0)))

((lessp (difference (add1 j) i))))

Linear arithmetic establishes that the measure (difference
(add1 j) i) decreases according to the well-founded relation
lessp in each recursive call. Hence, allzero is accepted under
the principle of definition. Observe that:

(or (falsep (allzero a i j))
(truep (allzero a i j)))

is a theorem.

[ 3 .2 0.25 ]
allzero

It succeeds; the definition is valid. It has now been proven that the recursive definition
cannot loop infinitely. The theorem prover also notes thatallzero is Boolean-valued,
which it may find useful later.

We ask the Rule Builder to print the definition ofallzero to illustrate the ppe command.

-> (ppe ’allzero)

and the definition is printed in suitably indented form, with the hint included.

(defn allzero
(a i j)
(if (lessp j i)

t
(and (allzero a (add1 i) j)

(equal (selecta! a i) 0)))
((lessp (difference (add1 j) i))))

nil

Incidentally, we could have definedallzero so that it recursed downward, and the prover
would still be able to prove every lemma proved in this session. In many ways, this
would have been an easier approach; we would not have needed the hint in thedefn
command that definedallzero.

Let us now test out our new definition. We hav edefined a function and can now run it on



some test data. The r command is used to runallzero on an array in which element 2 is 0
and element 3 is 0. (Remember that(storea! A I V) is equal to the arrayA except that
elementI has been replaced by the valueV ) The form(empty.array) is simply the array
of no elements.

-> (r (allzero (storea! (storea! (empty.array) 2 0) 3 0) 2 3))

The system responds with

t

which is what we want. Letus try an array which is not all zero.

-> (r (allzero (storea! (storea! (empty.array) 2 1) 3 1) 2 3))

f

Another test case; an array with one zero element; is it all zero from 2 to 2?

-> (r (allzero (storea! (storea! (empty.array) 2 0) 3 1) 2 2))

t

It is. Finally, we check out the case where the upper bound of theallzero is less than the
lower bound.

-> (r (allzero (storea! (storea! (empty.array) 2 1) 3 1) 3 2))



t

This, also, seems to work.

With our definition in good shape, we can now try to prove some theorems about it.Our
first lemma will be that if the lower bound exceeds the upper bound in theallzero call,
thenallzero is vacuously true.

-> (prove-lemma allzero-void-rule
(rewrite)
(implies (and (arrayp! a)

(numberp i)
(numberp j)
(lessp j i))

(allzero a i j)))

Note that the name of the lemma,allzero-void-rule, ends in-rule which will later make
this rule available to the Verifier. The theorem prover now proceeds with the proof,
which, given the definition, ought to be trivial.

This conjecture simplifies, opening up allzero, to:

t.

Q.E.D.

[ 7 .683333000000001 0.06666699999999916 ]
allzero-void-rule

It is trivial; the proof succeeds in 7.6 seconds (this is on a Sun II) and the event allzero-
void-rule is stored.

We also need a rule to handle the case where both bounds ofallzero are equal. This, too,
should be trivial. We type in our lemma



-> (prove-lemma allzero-single-rule
(rewrite)
(implies (and (arrayp! a)

(numberp i)
(numberp j)
(equal i j))

(allzero a i j)))

and the theorem prover goes to work.



This formula simplifies, using linear arithmetic, rewriting
with allzero-void-rule and x-not-less-than-x, and expanding
allzero, to:

(implies (and (arrayp! a) (numberp j))
(equal (selecta! a j) 0)),

which we will name *1.

We will appeal to induction. The recursive terms in the
conjecture suggest two inductions. However, they merge into
one likely candidate induction. We will induct according to
the following scheme:

(and (implies (and (array-recognizer a)
(equal a (empty-array)))

(p a j))
(implies (and (array-recognizer a)

(not (equal a (empty-array)))
(or (not (numberp

(array-elt-subscript a)))
(equal (array-elt-value a)

(undefined))))
(p a j))

(implies (and (array-recognizer a)
(not (equal a (empty-array)))
(not (or (not (numberp

(array-elt-subscript a)))
(equal (array-elt-value a)

(undefined))))
(equal (array-prev a) (empty-array)))

(p a j))
(implies (and (array-recognizer a)

(not (equal a (empty-array)))
(not (or (not (numberp

(array-elt-subscript a)))
(equal (array-elt-value a)

(undefined))))
(not (equal (array-prev a)

(empty-array)))
(p (array-prev a) j))

(p a j))
(implies (not (array-recognizer a))

(p a j))).
Linear arithmetic and the lemma array-prev-lessp can be used
to show that the measure (count a) decreases according to



the well-founded relation lessp in each induction step of the
scheme. The above induction scheme generates six new goals:

Case 6. (implies (and (array-recognizer a)
(equal a (empty-array))
(arrayp! a)
(numberp j))

(equal (selecta! a j) 0)),

which simplifies, unfolding array-recognizer, arrayp!,
equal, array-prev, array-elt-value, array-elt-subscript,
and selecta!, to the formula:

(not (numberp j)).

Eliminate the irrelevant term. This produces:

f.

Need we go on?

************** F A I L E D **************

The theorem prover stops, after about a minute of work, and reports failure. Whatwent
wrong? We can display the failed theorems in this session by typing

-> (pp failed-thms)

to which the theorem prover replies



(setq failed-thms
’((implies (and (arrayp! a)

(numberp i)
(numberp j)
(equal i j))

(allzero a i j))
(defn allzero

(a i j)
(if (lessp j i)

t
(and (allzero a (add1 i) j)

(equal (selecta! a i) 0)))
nil)))

t

We get to see our previous failure with the definition ofallzero as well as our latest
problem. Theproblem is obvious; we aren’t testing anything for zero in the hypotheses
of the theorem, so we can’t possibly expect it to prove allzero true in the conclusion.We
are missing a hypothesis. Letus try again.

-> (prove-lemma allzero-single-rule
(rewrite)
(implies (and (arrayp! a)

(numberp i)
(numberp j)
(equal i j)
(equal (selecta! a i) 0))

(allzero a i j)))

We hav eadded the hypothesis(equal! (selecta! a i) 0)and the theorem prover is now able
to prove this quite easily.



This conjecture simplifies, using linear arithmetic, rewriting
with allzero-void-rule and x-not-less-than-x, and unfolding the
functions equal and allzero, to:

t.

Q.E.D.

[ 3 .2 0.1333330000000008 ]
allzero-single-rule

Much better. Again, a trivial proof.

Now we get to a hard but crucial lemma.When a program is iterating through an array,
clearing each element to zero, we will need to be able to show that clearing each
additional element extends theallzero property of the array. This will require an
inductive proof.

-> (prove-lemma allzero-extend-upward-rule
(rewrite)
(implies (and (arrayp! a)

(numberp i)
(numberp j)
(allzero a i j)
(equal (selecta! a (add1 j)) 0))

(allzero a i (add1 j))))

Turning the problem over to the theorem prover...



Call the conjecture *1.

Let us appeal to the induction principle. The recursive
terms in the conjecture suggest four inductions. They merge
into two likely candidate inductions. However, only one is
unflawed. We will induct according to the following scheme:

(and (implies (lessp j i) (p a i j))
(implies (and (leq i j) (p a (add1 i) j))

(p a i j))).
Linear arithmetic informs us that the measure
(difference (add1 j) i) decreases according to the well-founded
relation lessp in each induction step of the scheme. The above
induction scheme generates three new formulas:

Case 3. (implies (and (lessp j i)
(arrayp! a)
(numberp i)
(numberp j)
(allzero a i j)
(equal (selecta! a (add1 j)) 0))

(allzero a i (add1 j))),

which simplifies, appealing to the lemmas allzero-void-rule
and sub1-add1, and unfolding allzero and lessp, to four new
formulas:

Case 3.4.
(implies (and (lessp j i)

(arrayp! a)
(numberp i)
(numberp j)
(equal (selecta! a (add1 j)) 0)
(leq (sub1 i) j))

(allzero a (add1 i) (add1 j))),

which again simplifies, using linear arithmetic, to:

(implies (and (lessp j (plus 1 j))
(arrayp! a)
(numberp (plus 1 j))
(numberp j)
(equal (selecta! a (add1 j)) 0)
(leq (sub1 (plus 1 j)) j))

(allzero a
(add1 (plus 1 j))



(add1 j))).

But this again simplifies, using linear arithmetic,
rewriting with plus-1, sub1-add1, allzero-void-rule,
and x-not-less-than-x, and unfolding the definitions of
lessp, plus, numberp, add1, and sub1, to:

t.

Case 3.3.
(implies (and (lessp j i)

(arrayp! a)
(numberp i)
(numberp j)
(equal (selecta! a (add1 j)) 0)
(leq (sub1 i) j))

(equal (selecta! a i) 0)).

This again simplifies, using linear arithmetic, to:

(implies (and (lessp j (plus 1 j))
(arrayp! a)
(numberp (plus 1 j))
(numberp j)
(equal (selecta! a (add1 j)) 0)
(leq (sub1 (plus 1 j)) j))

(equal (selecta! a (plus 1 j)) 0)).

But this again simplifies, applying the lemmas plus-1,
sub1-add1, and x-not-less-than-x, and unfolding the
functions lessp, plus, numberp, add1, sub1, and equal, to:

t.

Case 3.2.
(implies (and (lessp j i)

(arrayp! a)
(numberp i)
(numberp j)
(equal (selecta! a (add1 j)) 0)
(equal i 0))

(allzero a (add1 i) (add1 j))),

which again simplifies, using linear arithmetic, to:

t.



Case 3.1.
(implies (and (lessp j i)

(arrayp! a)
(numberp i)
(numberp j)
(equal (selecta! a (add1 j)) 0)
(equal i 0))

(equal (selecta! a i) 0)),

which again simplifies, using linear arithmetic, to:

t.

Case 2. (implies (and (leq i j)
(not (allzero a (add1 i) j))
(arrayp! a)
(numberp i)
(numberp j)
(allzero a i j)
(equal (selecta! a (add1 j)) 0))

(allzero a i (add1 j))),

which simplifies, opening up allzero, to:

t.

Case 1. (implies (and (leq i j)
(allzero a (add1 i) (add1 j))
(arrayp! a)
(numberp i)
(numberp j)
(allzero a i j)
(equal (selecta! a (add1 j)) 0))

(allzero a i (add1 j))),

which simplifies, applying sub1-add1, and opening up the
definitions of allzero, lessp, and equal, to:

t.

That finishes the proof of *1. Q.E.D.

[ 2 9.84999999999998 1.966667000000014 ]



In 30 seconds, an inductive proof, produced without manual intervention. Thisis Boyer
and Moore’s great accomplishment.It took them seven years to write the program that
does this.Note that our earlier lemmaallzero-void-rule was used in the proof; we are
teaching the prover more and more facts aboutallzero.

Now a seemingly simple but non-trivial property; storing into the array outside the
bounds ofallzero does not affect theallzero property.

-> (prove-lemma allzero-unchanged-1-rule
(rewrite)
(implies (and (numberp i)

(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(or (lessp x i) (lessp j x)))

(allzero (storea! a x v) i j)))

The prover takes over...



This conjecture simplifies, opening up the function or, to
two new goals:

Case 2. (implies (and (numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp x i))

(allzero (storea! a x v) i j)),

which we will name *1.

Case 1. (implies (and (numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp j x))

(allzero (storea! a x v) i j)),

which we would usually push and work on later by induction.
But if we must use induction to prove the input conjecture,
we prefer to induct on the original formulation of the
problem. Thus we will disregard all that we have previously
done, give the name *1 to the original input, and work on it.

So now let us consider:

(and (implies (and (numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp j x))

(allzero (storea! a x v) i j))
(implies (and (numberp i)

(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp x i))

(allzero (storea! a x v) i j))),

which we named *1 above. We will appeal to induction. The



recursive terms in the conjecture suggest 12 inductions.
They merge into three likely candidate inductions. However,
only one is unflawed. We will induct according to the following
scheme:

(and (implies (lessp j i) (p a x v i j))
(implies (and (leq i j) (p a x v (add1 i) j))

(p a x v i j))).
Linear arithmetic informs us that the measure (difference
(add1 j) i) decreases according to the well-founded relation
lessp in each induction step of the scheme. The above induction
scheme produces the following seven new goals:

Case 7. (implies (and (lessp j i)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp j x))

(allzero (storea! a x v) i j)).

This simplifies, applying the lemmas allzero-void-rule and
store-is-proper, to:

t.

Case 6. (implies (and (leq i j)
(not (allzero a (add1 i) j))
(numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp j x))

(allzero (storea! a x v) i j)).

This simplifies, unfolding the definition of allzero, to:

t.

Case 5. (implies (and (leq i j)
(allzero (storea! a x v) (add1 i) j)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)



(numberp x)
(lessp j x))

(allzero (storea! a x v) i j)).

This simplifies, rewriting with select-of-store, and unfolding
the function allzero, to:

(implies (and (leq i j)
(allzero (storea! a x v) (add1 i) j)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a (add1 i) j)
(equal (selecta! a i) 0)
(numberp x)
(lessp j x)
(equal x i))

(equal v 0)).

This again simplifies, trivially, to:

t.

Case 4. (implies (and (lessp j i)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp x i))

(allzero (storea! a x v) i j)).

This simplifies, applying allzero-void-rule and
store-is-proper, to:

t.

Case 3. (implies (and (leq i j)
(leq x j)
(leq (add1 i) x)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp x i))



(allzero (storea! a x v) i j)),

which simplifies, using linear arithmetic, to:

t.

Case 2. (implies (and (leq i j)
(not (allzero a (add1 i) j))
(numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp x i))

(allzero (storea! a x v) i j)),

which simplifies, unfolding the definition of allzero, to:

t.

Case 1. (implies (and (leq i j)
(allzero (storea! a x v) (add1 i) j)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a i j)
(numberp x)
(lessp x i))

(allzero (storea! a x v) i j)),

which simplifies, rewriting with the lemma select-of-store,
and opening up the function allzero, to:

(implies (and (leq i j)
(allzero (storea! a x v) (add1 i) j)
(numberp i)
(numberp j)
(arrayp! a)
(allzero a (add1 i) j)
(equal (selecta! a i) 0)
(numberp x)
(lessp x i)
(equal x i))

(equal v 0)).

However this again simplifies, using linear arithmetic, to:



t.

That finishes the proof of *1. Q.E.D.

[ 7 9.36666600000002 2.65000099999999 ]
allzero-unchanged-1-rule

An unexpectedly difficult proof; the prover went down a blind alley, backed up, started
over, beg an induction, performed a case analysis, and found a proof.

For our next rule, we prove that storing zero into an array does not cause theallzero
predicate to become false.

-> (prove-lemma allzero-unchanged-2-rule
(rewrite)
(implies (and (allzero a i j)

(arrayp! a)
(numberp i)
(numberp j)
(numberp x))

(allzero (storea! a x 0) i j)))

The prover replies:



Call the conjecture *1.

We will appeal to induction. Four inductions are suggested
by terms in the conjecture. They merge into two likely candidate
inductions. However, only one is unflawed. We will induct
according to the following scheme:

(and (implies (lessp j i) (p a x i j))
(implies (and (leq i j) (p a x (add1 i) j))

(p a x i j))).
Linear arithmetic informs us that the measure
(difference (add1 j) i) decreases according to the well-founded
relation lessp in each induction step of the scheme. The above
induction scheme produces the following three new goals:

Case 3. (implies (and (lessp j i)
(allzero a i j)
(arrayp! a)
(numberp i)
(numberp j)
(numberp x))

(allzero (storea! a x 0) i j)).

This simplifies, rewriting with allzero-void-rule and
store-is-proper, to:

t.

Case 2. (implies (and (leq i j)
(not (allzero a (add1 i) j))
(allzero a i j)
(arrayp! a)
(numberp i)
(numberp j)
(numberp x))

(allzero (storea! a x 0) i j)),

which simplifies, opening up allzero, to:

t.

Case 1. (implies (and (leq i j)
(allzero (storea! a x 0) (add1 i) j)
(allzero a i j)
(arrayp! a)
(numberp i)
(numberp j)



(numberp x))
(allzero (storea! a x 0) i j)),

which simplifies, applying select-of-store, and opening up
the functions allzero and equal, to:

t.

That finishes the proof of *1. Q.E.D.

[ 2 0.23333099999997 1.10000200000001 ]
allzero-unchanged-2-rule

That one wasn’t too hard.

Finally, the rule that lets us get some payoff f rom usingallzero in a program verification;
we show that if allzero is true for A from I to J, then for any element X between I and J,
then A[X] = 0.

-> (prove-lemma allzero-select-rule
(rewrite)
(implies (and (allzero a i j)

(numberp i)
(numberp j)
(arrayp! a)
(numberp x)
(leq x j)
(leq i x))

(equal (selecta! a x) 0)))

Over to the prover.

WARNING: Note that allzero-select-rule contains the free
variables j and i which will be chosen by instantiating
the hypothesis (allzero a i j).

Here the prover grumbles at us; our rule is not well chosen according to its built-in ideas
as to what an efficient rewrite lemma is. Rules of this type may slow down the prover in
later proofs. In this case, though, there is no better way to state this rule.The theorem
prover proceeds; this was only a WARNING. Thereis no risk to soundness here.





Name the conjecture *1.

Let us appeal to the induction principle. There are seven
plausible inductions. They merge into three likely candidate
inductions. However, only one is unflawed. We will induct
according to the following scheme:

(and (implies (lessp j i) (p a x i j))
(implies (and (leq i j) (p a x (add1 i) j))

(p a x i j))).
Linear arithmetic establishes that the measure
(difference (add1 j) i) decreases according to the well-founded
relation lessp in each induction step of the scheme. The above
induction scheme generates three new formulas:

Case 3. (implies (and (lessp j i)
(allzero a i j)
(numberp i)
(numberp j)
(arrayp! a)
(numberp x)
(leq x j)
(leq i x))

(equal (selecta! a x) 0)),

which simplifies, using linear arithmetic, to:

t.

Case 2. (implies (and (leq i j)
(not (allzero a (add1 i) j))
(allzero a i j)
(numberp i)
(numberp j)
(arrayp! a)
(numberp x)
(leq x j)
(leq i x))

(equal (selecta! a x) 0)),

which simplifies, unfolding allzero, to:

t.

Case 1. (implies (and (leq i j)
(lessp x (add1 i))



(allzero a i j)
(numberp i)
(numberp j)
(arrayp! a)
(numberp x)
(leq x j)
(leq i x))

(equal (selecta! a x) 0)),

which simplifies, using linear arithmetic, to:

(implies (and (leq i j)
(lessp i (add1 i))
(allzero a i j)
(numberp i)
(numberp j)
(arrayp! a)
(numberp i)
(leq i j)
(leq i i))

(equal (selecta! a i) 0)).

But this again simplifies, applying sub1-add1, and opening
up lessp, numberp, equal, and allzero, to:

(implies (and (equal i 0)
(allzero a 0 j)
(numberp j)
(arrayp! a))

(equal (selecta! a 0) 0)),

which again simplifies, opening up the definitions of
add1, lessp, equal, and allzero, to:

t.

That finishes the proof of *1. Q.E.D.

[ 1 5.0 1.266665999999987 ]
allzero-select-rule

Success. We now hav ea set of rules which will allow us to useallzero in a verification
and to use it in most of the reasonable ways to use such a predicate.Note that this



approach will work for any predicate based on properties of individual array elements.
Allzero is a simple example.

We are done proving; it is time to make a library file for use with the Verifier (or for later
use withnote-lib in case we need some more lemmas for our verification).

-> (make-lib ’allzero)
(%$unopenedport %$unopenedport)

The files allzero.lib and allzero.lisp have now been created in the current directory.
Together these constitute our new knowledge base.We are now ready to leave the Rule
Builder.

-> (exit)

This returns us to the UNIX shell. At this point, we can put our new rules in the working
directory created by the Verifier for the programexample6.pf by using theputrules
utility program, which extracts all the needed information from a Rule Builder database
and puts it into a much more compact file which the Verifier can use.

% putrules allzero.lib example6_d

Putrules runs and prints some messages. This is just a format translation; nothing
profound is going on here.

Processing database allzero.lib
Installing new database in example6_d

We can now rerun our verification.

% pasver example6.pf

and the verifier prints



Pass 1:
Pass 2:
Pass 3:

Verifying example6
No errors detected

so our verification is a success.

7.6 Additional output from the verifier

To show what the Verifier actually does with the information provided through rules, we
show some of the diagnostic output the Verifier produces for the use of those building and
testing rules. When a verification is unsuccessful, it is usually best to try to fix the
problem by looking at the source program. There are, though, additional outputs
available from the Verifier for dealing with difficult problems.

This section is not intended to give a real understanding of how the Verifier works. There
is an internal documentation manual for the Verifier, and the sections of that manual
entitled Icode to Jcode Translator and Verification Condition Generator cover the
generation of verification conditions and the internal file formats in much greater detail.

7.6.1 Thelogging file

The output below all appears in the filep3-vcs in the Verifier’s scratch directory
programname-dvcg flag is set on the call to pasver.)

7.6.1.1 Therule listing

The first part of this file is the list of rules found in theruledatabasefile.

allzero-extend-upward-rule --
Usable on conclusions only, free variables (A I J g00002)

Trigger pattern sequence: ((allzero A I g00002) (allzero A I J))

arrayp!(A)
and numberp!(I)
and numberp!(J)
and allzero(A,I,J)
and (A[addn!(J,1)] = 0)
implies

allzero(A,I,addn!(J,1))

We remember this rule from the Rule Builder session. Here, the rules appear in infix
form, in Pascal-like notation. Operatorswhich have no Pascal-F source representation
appear as function calls. These names all end with ‘‘!’ ’ to avoid interference with user-
defined functions. Note that numberp has becomenumberp!, and (add1 J) has become
addn!(J,1), where addn! is the plus function (natural number add) from the Rule



Builder.

The list of free variables lists all the terms which must be bound when the rule is
instantiated. Thedummy nameg00002 is a placeholder for theaddn! term in the
conclusion.

The trigger pattern sequenceshows when the rule will be applied.The Verifier will
look at the verification condition, and will try to match the first pattern in the sequence.
Once it matches, the variables in that pattern are bound and the Verifier begins looking
for the second pattern in the sequence. The message ‘‘usable on conclusions only’’
indicates that the first pattern is general enough (containing only one function symbol)
that applying the rule everywhere in every way thatallzero appeared would slow down
the system too much. So this rule will only be applied whenallzero appears in a proof
goal, that is, something written in anASSERT, STATE, SUMMARY, ENTRY, exit, or
INVARIANT, or (not possible in this case) in an internally generated requirement used to
insure subscripts within range or arithmetic results within bounds.Within this limitation,
rules are applied in every possible combination of ways, but only one deep, so if a proof
can be found in one step with the given rules, it will be found.

allzero-select-rule --
Usable on conclusions only, free variables (A I J X)

Trigger pattern sequence: ((selecta! A X) (allzero A I J))

allzero(A,I,J)
and numberp!(I)
and numberp!(J)
and arrayp!(A)
and numberp!(X)
and not gtn!(X,J)
and not gtn!(I,X)
implies

A[X] = 0

Note that A[X] is (selecta! A X) in the pattern. The functiongtn! is the greater than
operator for the natural numbers.



allzero-single-rule --
Usable on conclusions only, free variables (A I J)

Trigger pattern sequence: ((allzero A I J))

arrayp!(A) and numberp!(I) and numberp!(J) and (I = J) and (A[I] = 0)
implies

allzero(A,I,J)

allzero-unchanged-1-rule --
Usable anywhere, free variables (A I J V X)

Trigger pattern sequence: ((allzero (storea! A X V) I J))

numberp!(I)
and numberp!(J)
and arrayp!(A)
and allzero(A,I,J)
and numberp!(X)
and (gtn!(I,X) or gtn!(X,J))
implies

allzero(<A,X,V>,I,J)

Note that this rule is usable anywhere. Becausethere are nested function symbols in the
pattern, we don’t expect to see too many places where this rule could be applied without
purpose. Alsonote the appearance of<A,X,V> which is the infix form of (storea! A X
V).

allzero-unchanged-2-rule --
Usable anywhere, free variables (A I J X)

Trigger pattern sequence: ((allzero (storea! A X 0) I J))

allzero(A,I,J)
and arrayp!(A)
and numberp!(I)
and numberp!(J)
and numberp!(X)
implies

allzero(<A,X,0>,I,J)



allzero-void-rule --
Usable on conclusions only, free variables (A I J)

Trigger pattern sequence: ((allzero A I J))

arrayp!(A) and numberp!(I) and numberp!(J) and gtn!(I,J)
implies

allzero(A,I,J)

The following rules are part of the standard database, and are used for proving
definedness.

arraytrue-extend-upward-rule --
Usable on conclusions only, free variables (A I J g00005)

Trigger pattern sequence: ((arraytrue! A I g00005) (arraytrue! A I J))

(arraytrue!(A,I,J) = true) and (alltrue!(A[addn!(J,1)]) = true)
implies

arraytrue!(A,I,addn!(J,1)) = true

arraytrue-single-rule --
Usable on conclusions only, free variables (A I)

Trigger pattern sequence: ((selecta! A I))

arraytrue!(A,I,I) = true = alltrue!(A[I]) = true

arraytrue-unchanged-rule --
Usable anywhere, free variables (A I J V X)

Trigger pattern sequence: ((arraytrue! (storea! A X V) I J))

numberp!(X)
and numberp!(I)
and numberp!(J)
and arrayp!(A)
and (arraytrue!(A,I,J) = true)
and (gtn!(I,X) or gtn!(X,J))
implies

arraytrue!(<A,X,V>,I,J) = true



arraytrue-void-rule --
Usable on conclusions only, free variables (A I J)

Trigger pattern sequence: ((arraytrue! A I J))

gtn!(I,J) implies arraytrue!(A,I,J)

7.6.1.2 Theverification trace

Now we go on to the verification goals themselves. Ifa verification condition had failed,
it would have been printed, but all these succeeded, so only the goal and path appear.
This is exactly the text that would appear as an error message if the proof failed.

Verification condition for {example6.pf:18} table1[(j - 1) + 1] = 0
(ASSERT assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} FOR loop never entered
Tried arraytrue-single-rule.

VC #1 proved in 1.00 seconds.

This one took one second, andarraytrue-single-rule was successfully pattern-matched,
although it is irrelevant in this case.The message ‘‘Tried’’ i ndicates only that the rule
could have been applied, not that it actually was.

Verification condition for {example6.pf:18} table1[(j - 1) + 1] = 0
(ASSERT assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} FOR loop exit
Tried allzero-select-rule.
Tried arraytrue-single-rule.

VC #2 proved in 2.70 seconds.

Here there is some statement about definedness in the hypothesis of the verification
condition which triggered the built-in rulearraytrue-single-rule.



Verification condition for {example6.pf:16} allzero(table1,1,100)
(ASSERT assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} FOR loop never entered
Tried allzero-extend-upward-rule.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #3 proved in 0.63 seconds.

We do not get any useful information about which rule did it, if any.

Verification condition for {example6.pf:16} allzero(table1,1,100)
(ASSERT assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} FOR loop exit
Tried allzero-extend-upward-rule 2 times.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #4 proved in 1.00 seconds.

Verification condition for {example6.pf:11} i <= 99
(FOR loop count)

Path:
{example6.pf:11} Start of "example6"

VC #5 proved in 0.75 seconds.



Verification condition for {example6.pf:14} allzero(table1,1,i)
(STATE assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop
Tried allzero-unchanged-2-rule 2 times.
Tried allzero-unchanged-1-rule 2 times.
Tried allzero-extend-upward-rule 2 times.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #6 proved in 28.81 seconds.

This is the inductive case around the loop, the hard one. It took 28 seconds.

Verification condition for {example6.pf:14} allzero(table1,1,i)
(STATE assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop
Tried allzero-unchanged-2-rule 2 times.
Tried allzero-unchanged-1-rule 2 times.
Tried allzero-extend-upward-rule 2 times.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #7 proved in 2.45 seconds.

Verification condition for {example6.pf:13} allzero(table1,1,i - 1)
(ASSERT assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop
Tried allzero-unchanged-2-rule.
Tried allzero-unchanged-1-rule.
Tried allzero-extend-upward-rule.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #8 proved in 9.25 seconds.



Verification condition for {example6.pf:13} allzero(table1,1,i - 1)
(ASSERT assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop
Tried allzero-unchanged-2-rule.
Tried allzero-unchanged-1-rule.
Tried allzero-extend-upward-rule.
Tried allzero-single-rule.
Tried allzero-void-rule.

VC #9 proved in 2.03 seconds.

Verification condition for {example6.pf:12} i - 1 <= 99
(subscript check for "table1" 1..100)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop

VC #10 proved in 0.30 seconds.

This is an internally-generated proof goal, a subscript check.

Verification condition for {example6.pf:12} i - 1 <= 99
(subscript check for "table1" 1..100)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop

VC #11 proved in 0.26 seconds.

Verification condition for {example6.pf:12} i - 1 >= 0
(subscript check for "table1" 1..100)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop

VC #12 proved in 0.31 seconds.



Verification condition for {example6.pf:12} i - 1 >= 0
(subscript check for "table1" 1..100)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop

VC #13 proved in 0.26 seconds.

Verification condition for {example6.pf:12} "i" is defined
Path:

{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop

VC #14 proved in 0.08 seconds.

This is a test to make sure the variablei was defined at line 12. These usually are very
fast to prove.

Verification condition for {example6.pf:12} "i" is defined
Path:

{example6.pf:11} Start of "example6"
{example6.pf:11} Enter FOR loop

VC #15 proved in 0.06 seconds.

That is the summary of the verification. Whena verification is unsuccessful, and it is is
not clear why, examination of this file can be quite useful. Remember that this file is not
generated unless requested, and generating it does slow down the verification by about
20-40%.

7.6.1.3 Whatverification conditions look like

It is not usually necessary for the user to look at verification conditions, but when
difficulties are encountered it can sometimes be useful.When using a compiler, it is
sometimes useful to turn on a listing of generated object code. The equivalent listing for
a verifier is the listing of verification conditions.We thus provide an explanation as to
how to read a verification condition.

Had a verification condition failed, in the above example, we would see, in this log of
verification conditions, the verification condition itself. If we force some errors by trying
to run the verification above without any rules aboutallzero available, we would find the
information below in the log.



Verification condition for {example6.pf:14} allzero(table1,1,i)
(STATE assertion)

Path:
{example6.pf:11} Start of "example6"
{example6.pf:15} Back to top of FOR loop

(TEMP4__v01 = 1)
and (TEMP5__v01 = 100)
and true
and (i_4v03 <= TEMP5__v01)
and allzero(table1_2v02,1,i_4v03)
and (i_4v03 >= TEMP4__v01)
and (i_4v03 < TEMP5__v01)
and (i_4v03 <= 99)
and (i_4v04 = i_4v03 + 1)
and (i_4v04 - 1 >= 0)
and (i_4v04 - 1 <= 99)
and (table1_2v03 = (table1_2v02[(i_4v04 - 1) + 1] := 0))
and allzero(table1_2v03,1,i_4v04 - 1)
implies

allzero(table1_2v03,1,i_4v04)

VC #6 FAILED in 1.48 seconds.

Here, we see the actual verification condition to be proven. Thisverification condition is
for the path around the loop, with the proof goal ofallzero(table1,1,i) in the STATE
statement.

Verification conditions are always of the form ‘‘big conjunction implies proof goal’’. The
proof goal is always the term printed after the implication. The terms in the hypothesis
are generated by backwards tracing through the program, examining each statement along
the indicated path.The details of how this is done are beyond the scope of this manual,
but generally follow the backwards-tracing approach of Floyd, Manna, and others.The
basic idea is that programs are converted to formulas by tracing backwards through each
statement, using a new variable name for each variable every time its value is changed.
For example, the Pascal-F statements

x := 1 ;
x := x + 1 ;
assert(x = 2);

would generate a verification condition of the form



x_1v01 = 1
and x_1v02 = (x_1v01 + 1)
implies

x_1v02 = 2

Note thatx_1v01andx_1v02represent values ofx at different points in the program.In
our allzero example, the variable namesi and table1 appear here in modified form; the
table1_2v03string is the variabletable1 after the third assignment to it. The names are
actually constructed by taking the user’s name of the variable, adding a delimiter and a
variable serial number, (so that variables with the same name but in different scopes are
made unique) and adding av or ad, where av indicates that thevalue of the variable is
being referred to, andd indicates that thedefinedness partof the variable is being
referenced. Finally, a two digit suffix indicating, as in the little example withx above,
which value of the variable we are referring to, is added to the name. the code.

The v or d component deserves some extra discussion. Definedness of variables is
handled by a convenient fiction. We pretend that associated with each variable there is a
definedness flag, set to true when any value is assigned to the variable and tested at every
reference to the variable. We then try to prove that the flag is always true at every
reference. For an array or record our definedness part will be an array or record with all-
Boolean elements or lowest-level fields. Whenthe Verifier generates a verification
condition about the definedness of a variable, it constructs a name using thed letter.

Not shown in the verification condition is the type information. The theorem prover has
available to it all the information in the type declarations of the Pascal-F program.For
example, if the declaration

var i: 0..100;

appeared in a Pascal-F program, the theorem prover would be able to prove

true
implies

i_1v01 <= 100

without any difficulty. We can assume that all variables stay within their type because we
generate proof goals for the bounds of every variable at every assignment to that variable.
Since we also check at every reference to every variable that the variable has been
initialized (defined) we are thus safe in assuming that variables stay within their types.

7.6.2 Thediagnostics file

The file p3-diagscontains any error messages produced during the verification. Thisis
useful if messages scroll by on a CRT terminal and are thereby lost.Only messages from



pass 3 appear in this file, but pass 3 is where all the time goes.

7.6.3 Therule data base file

The rule data base fileruledatabase is created by theputrules utility and read by the
Verifier. It contains the rule data base to be used for the current verification.

7.6.4 Thehistory file

The history filehistory contains the entire intermediate code for each program unit
previously verified successfully. On rev erification attempts, if the newly generated
intermediate code matches that found in the history file, verification of that program unit
is skipped.Removal of this file will force a complete rerun of the verification. Notethat
putrules will remove this file if a new database is used with different defn entries for
some previously useddefn definition.

8. Theformal theory of the Rule Builder

The theory built into the Rule Builder is the Boyer-Moore theory of the natural numbers,
plus the definitions and lemmas given in this chapter. The notation is that ofA
Computational Logic. Note that everything here has been proven by the Boyer-Moore
prover.

8.1 Thetheory

We begin by defining the notion of Boolean value.

Definition.
(booleanp! X)

=
(or (equal X (true))

(equal X (false)))

The next step is to add a large batch of carefully chosen facts about the natural numbers.

Theorem. equal-lessp:
(equal (equal (lessp X Y) Z)

(if (lessp X Y)
(equal t Z)
(equal f Z)))

Theorem. associativity-of-plus:
(equal (plus (plus X Y) Z)

(plus X (plus Y Z)))

Theorem. equal-times-0:
(equal (equal (times X Y) 0)

(or (zerop X) (zerop Y)))

Theorem. commutativity2-of-plus:
(equal (plus X (plus Y Z))

(plus Y (plus X Z)))



Theorem. commutativity-of-times:
(equal (times X Y) (times Y X))

Theorem. distributivity-of-times-over-plus:
(equal (times X (plus Y Z))

(plus (times X Y) (times X Z)))

Theorem. plus-0:
(equal (plus X 0) (fix X))

Theorem. plus-1:
(implies (numberp X)

(equal (plus 1 X) (add1 X)))

Theorem. x-not-less-than-x:
(equal (lessp X X) f)

Theorem. times-0:
(equal (times X 0) 0)

Theorem. plus-non-numberp:
(implies (not (numberp Y))

(equal (plus X Y) (fix X)))

Theorem. times-non-numberp:
(implies (not (numberp Y))

(equal (times X Y) 0))

Theorem. associativity-of-times:
(equal (times (times X Y) Z)

(times X (times Y Z)))

Theorem. commutativity2-of-times:
(equal (times X (times Y Z))

(times Y (times X Z)))

Theorem. plus-add1:
(equal (plus X (add1 Y))

(if (numberp Y)
(add1 (plus X Y))
(add1 X)))

Theorem. times-add1:
(equal (times X (add1 Y))

(if (numberp Y)
(plus X (times X Y))
(fix X)))



Theorem. commutativity-of-plus:
(equal (plus X Y) (plus Y X))

Theorem. plus-equal-0:
(equal (equal (plus A B) 0)

(and (zerop A) (zerop B)))

Theorem. plus-cancellation:
(equal (equal (plus A B) (plus A C))

(equal (fix B) (fix C)))

Theorem. plus-right-id2:
(implies (not (numberp Y))

(equal (plus X Y) (fix X)))

Theorem. monotonicity-of-plus-1:
(implies (and (numberp A)

(numberp B)
(numberp C))

(equal (lessp (plus A B) (plus A C))
(lessp B C)))

Theorem. difference-x-x:
(equal (difference X X) 0)

Theorem. difference-plus-1:
(equal (difference (plus X Y) X)

(fix Y))

Theorem. difference-plus-2:
(equal (difference (plus Y X) X)

(fix Y))

Theorem. equal-difference-0:
(equal (equal 0 (difference X Y))

(not (lessp Y X)))

Theorem. zero-difference:
(implies (lessp A B)

(equal (difference A B) 0))

Theorem. plus-difference3:
(equal (difference (plus X Y) (plus X Z))

(difference Y Z))



Theorem. monotonicity-of-difference-1:
(implies (and (numberp V)

(numberp Y)
(numberp Z)
(not (lessp Z V))
(not (lessp Y V)))

(equal (lessp (difference Y V)
(difference Z V))

(lessp Y Z)))

Theorem. monotonicity-of-difference-2:
(implies (and (numberp V)

(numberp Y)
(numberp Z)
(lessp Z V)
(lessp Y V))

(equal (lessp (difference V Z)
(difference V Y))

(lessp Y Z)))

Theorem. monotonicity-of-difference-3:
(implies (and (numberp W)

(numberp V)
(numberp X)
(not (lessp X W))
(not (lessp X V)))

(equal (lessp (difference X V)
(difference X W))

(lessp W V)))

Theorem. times-zero:
(equal (times X 0) 0)

Theorem. distributivity-of-times-over-difference:
(equal (times X (difference Y Z))

(difference (times X Y) (times X Z)))

Theorem. monotonicity-of-times-1:
(implies (and (numberp X)

(numberp Y)
(numberp Z)
(not (zerop X)))

(equal (not (lessp (times X Y) (times X Z)))
(not (lessp Y Z))))



Theorem. monotonicity-of-times-3:
(implies (and (numberp A)

(numberp B)
(numberp C)
(not (equal C 0)))

(equal (lessp (times C A) (times C B))
(lessp A B)))

Theorem. monotonicity-of-times-by-twos:
(implies (and (lessp X Y) (lessp Z W))

(lessp (times X Z) (times Y W)))

Theorem. remainder-x-x:
(equal (remainder X X) 0)

Theorem. remainder-quotient:
(equal (plus (remainder X Y)

(times Y (quotient X Y)))
(fix X))

Theorem. remainder-quotient-elim:
(implies (and (not (zerop Y)) (numberp X))

(equal (plus (remainder X Y)
(times Y (quotient X Y)))

X))

Theorem. remainder-non-numeric:
(implies (not (numberp X))

(equal (remainder Y X) (fix Y)))

Theorem. remainder-wrt-1:
(equal (remainder Y 1) 0)

Theorem. quotient-times:
(equal (quotient (times Y X) Y)

(if (zerop Y) 0 (fix X)))

Theorem. monotonicity-of-times:
(implies (and (numberp X)

(numberp Y)
(numberp Z)
(not (lessp Y Z)))

(equal (lessp (times X Y) (times X Z))
f))

We now add an object called undefined which will be needed in the definition of arrays.
This has nothing to do with the Verifier’s proofs of definedness; it is just a default object



introduced to makeselecta! a total function.

Shell Definition.
Add the shell undefined-object of zero arguments with
bottom object undefined,
recognizer undefinedp,
accessors,
and default values.

The definition of arrays is constructive. An array is actually represented as an ordered list
of subscript-value pairs.

Shell Definition.
Add the shell array-shell of three arguments with
bottom object empty-array,
recognizer array-recognizer,
accessors array-elt-value, array-elt-subscript, and array-prev,
type restrictions (none-of), (one-of numberp), and:

(one-of array-recognizer)
and default values undefined, zero, and empty.array.

The predicatearrayp! is true only if an array is a valid ordered list of pairs, properly
ordered in increasing order of subscript. Note that something is an array only if the
subscripts in the list are in ascending order and no value part is UNDEFINED.

Definition.
(arrayp! A)

=
(if

(array-recognizer A)
(if (equal A (empty-array))

t
(if (or (not (numberp (array-elt-subscript A)))

(equal (array-elt-value A)
(undefined)))

f
(if (equal (array-prev A) (empty-array))

t
(and (lessp (array-elt-subscript (array-prev A))

(array-elt-subscript A))
(arrayp! (array-prev A))))))

f)

selecta! is the array subscripting function, which searches the list of pairs.



Definition.
(selecta! A I)

=
(if (equal (array-elt-subscript A) I)

(array-elt-value A)
(if (equal (array-prev A) (empty-array))

(undefined)
(selecta! (array-prev A) I )))

storea! is quite complex, since it is actually a routine for inserting into an ordered list.
Our check on the validity of this is that we are able to prove all the standard theorems
aboutselecta! andstorea!,which are axioms in the Oppen system.

Definition.
(storea! A I V)

=
(if (and (arrayp! A) (numberp I))

(if (equal A (empty-array))
(if (equal V (undefined))

A
(array-shell V I (empty-array)))

(if (equal (array-elt-subscript A) I)
(if (equal V (undefined))

(array-prev A)
(array-shell V I (array-prev A)))

(if (lessp (array-elt-subscript A) I)
(if (equal V (undefined))

A
(array-shell V I A))

(array-shell (array-elt-value A)
(array-elt-subscript A)
(storea! (array-prev A) I V )))))

(empty-array))

The result ofstorea! is shown to be a valid array.

Theorem. store-is-proper:
(equal (arrayp! (storea! A I V)) t)

We prove the classic lemmas aboutselecta! andstorea! This not only shows the validity
of our definition ofstorea! , but gives the Rule Builder a set of rules which comprise a
decision procedure for our array theory.

Theorem. select-of-store-1:
(implies (and (arrayp! A) (numberp I))

(equal (selecta! (storea! A I V) I)
V))



Theorem. store-of-select:
(implies (and (arrayp! A) (numberp I))

(equal (storea! A I (selecta! A I))
A))

Theorem. select-of-store-2:
(implies (and (arrayp! A)

(numberp I)
(numberp J)
(not (equal I J)))

(equal (selecta! (storea! A I V) J)
(selecta! A J)))

Theorem. select-of-store:
(implies (and (arrayp! A)

(numberp I)
(numberp J))

(equal (selecta! (storea! A I V) J)
(if (equal I J) V (selecta! A J))))

Theorem. store-of-store-1:
(implies (and (arrayp! A) (numberp I))

(equal (storea! (storea! A I V) I W)
(storea! A I W)))

storer! is the record store function.The Rule Builder does not know about Verifier
record structures, but the definition as an undefined function allows the appearance of
storer! in rules. Of course, the only thing known about it in the Rule Builder is that if
the arguments tostorer! are the same, the result is the same. The Verifier proper has
built-in knowledge aboutstorer! and selectr!0 , but that knowledge is type-dependent
and cannot be used here.

Undefined Function.
(storer! A B C)

Undefined Function.
(selectr! r I)

alltrue! is true of an object if and only if all its components have the Boolean value
TRUE. The Verifier has built-in knowledge aboutalltrue! and, as with the record
operators, that knowledge is type-dependent.

Undefined Function.
(alltrue! r)

Integers are built up by defining a Boyer-Moore shell such that negative numbers are a
shell whose negative-guts field contains the natural number for the absolute value. This
creates a problem in that there is such a thing as negative zero. This definition of
integerp! disallows negative zero, and all our operations on the integers never produce



negative zero.

Definition.
(integerp! X)

=
(if (numberp X)

t
(if (negativep X)

(if (zerop (negative-guts X)) f t)
f))

This turns negative zero into positive zero.

Definition.
(znormalize X)

=
(if (negativep X)

(if (equal (negative-guts X) 0) 0 X)
X)

This is a conversion from a natural number to a negative number which avoids minus
zero.

Definition.
(zmonus X)

=
(znormalize (minus X))

Unary negation.

Definition.
(negi! X)

=
(if (integerp! X)

(if (negativep X)
(negative-guts X)
(zmonus X))

0)

Integer addition is defined by cases. Proofs about integer arithmetic thus generate
extensive case analysis, and due to a limitation of the Boyer-Moore prover it does not
help to provide lemmas about nonrecursive definitions. Thereforethere are no lemmas in
this knowledge base about the integer arithmetic functions.It is quite possible to prove
rules aboutaddi! and its friends, and it is not usually difficult, but such proofs run
slowly.



Definition.
(addi! X Y)

=
(if (negativep X)

(if (negativep Y)
(zmonus (plus (negative-guts X)

(negative-guts Y)))
(if (lessp Y (negative-guts X))

(zmonus (difference (negative-guts X) Y))
(difference Y (negative-guts X))))

(if (negativep Y)
(if (lessp X (negative-guts Y))

(zmonus (difference (negative-guts Y) X))
(difference X (negative-guts Y)))

(plus X Y)))

Definition.
(subi! X Y)

=
(addi! X (negi! Y))

Definition.
(muli! X Y)

=
(if (negativep X)

(if (negativep Y)
(times (negative-guts X)

(negative-guts Y))
(zmonus (times (negative-guts X) Y)))

(if (negativep Y)
(zmonus (times X (negative-guts Y)))
(times X Y)))

Definition.
(divi! X Y)

=
(if (negativep X)

(if (negativep Y)
(quotient (negative-guts X)

(negative-guts Y))
(zmonus (quotient (negative-guts X) Y)))

(if (negativep Y)
(zmonus (quotient X (negative-guts Y)))
(quotient X Y)))

The integer relational operators are defined by cases.



Definition.
(lti! X Y)

=
(if (negativep X)

(if (negativep Y)
(lessp (negative-guts Y)

(negative-guts X))
(not (and (equal (negative-guts X) 0)

(zerop Y))))
(if (negativep Y) f (lessp X Y)))

Definition.
(gti! X Y)

=
(lti! Y X)

Definition.
(gei! X Y)

=
(not (lti! X Y))

Definition.
(lei! X Y)

=
(not (lti! Y X))

zabs is not actually used in rule building, but has been used in producing soundness
proofs for the definitions of integer arithmetic.

Definition.
(zabs X)

=
(if (negativep X) (negative-guts X) X)

Definition.
(sign-mult X Y)

=
(if (equal X 1)

Y
(if (equal Y 1) -1 1))

Definition.
(positivep X)

=
(if (numberp X)

(if (not (zerop X)) t f)
f)



Definition.
(sign X)

=
(if (numberp X)

1
(if (negativep X) -1 0))

Definition.
(switch s X)

=
(if (equal s 1) X (negi! X))

Definition.
(negative-and-non-zerop X)

=
(if (negativep X)

(if (not (zerop (negative-guts X)))
t f)

f)

Definition.
(diff-plus-1 X Y)

=
(difference (add1 Y) X)

Thearraytrue! function is used in showing definedness.arraytrue! of A is true fromI
to J if and only if every element ofA within the rangeI to J is equal to true.The Verifier
will crank outarraytrue! forms when the user writes

defined(A,I,J)

or

defined(A)

whereA is an array.

Definition.
(arraytrue! A I J)

=
(if (lessp J I)

t
(and (equal (alltrue! (selecta! A I)) t)

(arraytrue! A (add1 I) J)))

We hav eall the obvious rules aboutarraytrue!.

Theorem. arraytrue-void-rule:
(implies (lessp J I)

(arraytrue! A I J))



Theorem. arraytrue-single-rule:
(equal (equal (arraytrue! A I I) t)

(equal (alltrue! (selecta! A I)) t))

Theorem. arraytrue-extend-upward-rule:
(implies (and (equal (arraytrue! A I J) t)

(equal (alltrue! (selecta! A (add1 J)))
t))

(equal (arraytrue! A I (add1 J)) t))

Theorem. arraytrue-unchanged-rule:
(implies (and (numberp X)

(numberp I)
(numberp J)
(arrayp! A)
(equal (arraytrue! A I J) t)
(or (lessp X I) (lessp J X)))

(equal (arraytrue! (storea! A X V) I J)
t))

Theorem. arraytrue-unchanged-2-rule:
(implies (and (numberp X)

(numberp I)
(numberp J)
(arrayp! A)
(equal (alltrue! V) t)
(equal (arraytrue! A I J) t))

(equal (arraytrue! (storea! A X V) I J)
t))

Theorem. arraytrue-select-rule:
(implies (and (arraytrue! A I J)

(numberp I)
(numberp J)
(numberp X)
(not (lessp X I))
(not (lessp J X)))

(alltrue! (selecta! A X)))

Finally, we hav e the array construction function. This function is used to construct
constant arrays in which all elements are the same.The only use for this function is to
construct objects which represent the definedness parts of arrays known to be defined.
When an entire array replacement appears in Pascal-f, the definedness part of the array
will be set equal to a value built witharrayconstruct! in the verification condition.



Definition.
(arrayconstruct! V I J)

=
(if (lessp J I)

(empty-array)
(storea! (arrayconstruct! V (add1 I) J)

I V))

Theorem. arrayconstruct-is-arrayp:
(arrayp! (arrayconstruct! V I J))

Theorem. arrayconstruct-select-rule:
(implies (and (numberp I)

(numberp J)
(numberp X)
(not (lessp X I))
(not (lessp J X)))

(equal (selecta! (arrayconstruct! V I J) X)
V))

Theorem. arrayconstruct-implies-arraytrue-rule:
(implies (and (numberp I)

(numberp J)
(equal (alltrue! V) t))

(equal (arraytrue! (arrayconstruct! V I J)
I J)

t))

That is the built-in knowledge base. It takes about two hours to prove.
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9.1 Restrictionsand limitations

This release of the system is the first release, and while we have taken extensive
precautions against unsoundness we cannot at this time make strong statements about the
validity of the verifications. Anumber of features are unimplemented or implemented
with restrictions; however, none of these limitations affect soundness.



9.1.1 Unimplementedfeatures

The system is faithful to this manual except as noted below.

• Fixed point arithmetic is unimplemented.

• The SUMMARY statement is not implemented.

• Arrays with negative lower bounds are prohibited.

• Variant records are unimplemented.

• Arrays with Boolean subscripts (not elements) are prohibited.

• Most set operators are unimplemented.

• The built-in functions of Pascal are unimplemented. The type coercionschr and
ord, along with the Pascal-F named type coercions, are implemented.

• The EFFECT declaration part is not fully implemented; EFFECT clauses are
accepted and checked but not utilized in proofs.

9.1.2 Restrictions

• Side effect detection for functions is safe, but overly restrictive. If a function has
side effects, essentially the only way it can be used is alone in an assignment
statement. Procedureswith side effects present no problems.

• The Verifier’s knowledge about multiplication is weak. Nothing prevents the user
from building new rules about the multiplication operator, but performance would
be much better if the knowledge were built-in.

• The built-in knowledge about definedness of arrays is limited; arrays must be
initialized in strictly increasing order of subscript.However, it is possible to prove
more lemmas aboutarraytrue! to allow more general initialization if desired.

• The target machine against which the Verifier verifies is the Ford Electronic Engine
Control IV, and the 16-bit, twos complement restrictions of that machine are
enforced by the verifier.

• There is no compiler code generator pass compatible with the verifier at present, so
there is no way to run Pascal-F programs containing verification statements.There
is a Pascal-F compiler for the EEC IV, but it is not available for distribution outside
Ford.

9.1.3 Known bugs

9.1.4 Pass 1 (Compiler pass)

• Some VALUE statements generate unexpected syntax errors.



• The compiler pass is not as solid as we would like; the intermediate code generated
for some operations confuses the decompiler in pass 2, resulting in fatal internal
errors.

9.1.5 Pass 2 (Semantic analysis)

• FORWARD declarations will cause pass 2 to become confused about block
numbers and an internal check will abort the Verifier.

• There is a worry that the semantics of the FOR loop exit test may not exactly match
the compilers for the case where the bounds are near to arithmetic overflow or
underflow. The Verifier’s semantics are conservative but may not be conservative
enough.

• Records with only one field can create ambiguities as to whether a reference to a
data item refers to a field or the entire record.This can result in pass 2 internal
errors.

9.1.6 Pass 3 (Path tracing)

• The optimization of verification conditions will sometimes cause a useful term to
be omitted from a hypothesis of a verification condition. The ommitted term will
be from a proof goal, and will be a mention of a function whose arguments contain
no variables needed in the proof at that point.A work-around for this is known.

9.1.7 Pass 4 (Simplifier)

• Rule handling is unreasonably slow in the presence of many rules applicable to the
same expression.

• In at least one known case, the numeric portion of the prover fails to find a proof
for a simple formula known to be true.

9.1.8 RuleBuilder

• Lemmas about nonrecursive functions are not effectively used by the Boyer-Moore
prover. This severly limits the proof power of the system with respect to the
integers.

• The manual sections on hints are inadequate.

9.2 Reportingtrouble

Problems with the system should be reported to the address given in the preface. All
trouble reports should include copies of the files in the scratch directory, the source
program, and the error messages printed.Before submitting the trouble report, the
verification should be rerun with the-d keyletter on. This will rerun the verification with
all debug output turned on.
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